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Chapter 10

Reed-Muller Codes and Boolean
Functions

Reed-Muller codes are one of the oldest families of error-correcting codes. Even if their min-
imum distance is relatively small, they have been widely used for error correction because of
their very simple decoding algorithm. A notable example is the use of the Reed-Muller code
R(1, 5) for transmitting the images sent by the Mariner 9 space probe, in Martian orbit since
November 1971. Also, Reed-Muller codes are of major mathematical interest because of their
connection with Boolean functions and with finite affine and projective geometries (details on
this last issue can be found in [Ass92]).

10.1 Boolean functions and their representations

Definition 10.1 (Boolean function). A Boolean function of n variables is a function from
Fn2 into F2. Its value vector is the binary vector vf of length 2n composed of all f(x) when
x ∈ Fn2 .

10.1.1 Truth table and Algebraic normal form

A Boolean function is usually defined by its truth table, which gives the images of all elements
in Fn2 . For instance, Table 10.1 is the truth table of a Boolean function of 3 variables. The
value vector of f is the vector of F8

2 corresponding to the last row in the truth table.
Boolean functions are often identified with their value vectors. In particular, the weight

and the support of a Boolean function f refer to the weight and the support of its value
vector vf . Most cryptographic applications use balanced Boolean functions, i.e., Boolean

x1 0 1 0 1 0 1 0 1
x2 0 0 1 1 0 0 1 1
x3 0 0 0 0 1 1 1 1

f(x1, x2, x3) 0 1 0 0 0 1 1 1

Table 10.1: Truth table of a Boolean function of 3 variables.
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6 Chapter 10. Reed-Muller Codes and Boolean Functions

functions f whose output is uniformly distributed. This equivalently means that the weight
of vf is half of its length.

Besides the truth table, there are several other representations of Boolean functions which
may be more appropriate in some contexts. In coding theory and in cryptography, a very
natural representation is the so-called algebraic normal form (ANF), which corresponds to
the expression of a Boolean function as a multivariate polynomial. Since the n inputs of the
function take their values in F2, they must be considered modulo X2 + X. Therefore, this
polynomial has degree at most 1 in each input variable. It follows that any monomial of this
polynomial is the product of some input variables. Each monomial can then be characterized
by a subset of I = {1, . . . , n}, i.e.,

∏
i∈I xi, or equivalently by the n-bit vector u having I as

support. This second notation will be extensively used in the context of Boolean functions.

Notation 10.2. For any u ∈ Fn2 , xu denotes the monomial in F2[x1, . . . , xn]/(x2
1+x1, . . . , x

2
n+

xn) defined by
n∏
i=1

xuii .

The following theorem then shows that any Boolean function can be uniquely represented
by a multivariate polynomial, and it also gives a simple formula for computing this polynomial
from the value vector of the function.

Theorem 10.3 (Algebraic normal form). Let f be a Boolean function of n variables. Then,
there exists a unique multivariate polynomial in F2[x1, . . . , xn]/(x2

1 +x1, . . . , x
2
n+xn) such that

f(x1, . . . , xn) =
∑
u∈Fn2

aux
u, with au ∈ F2 .

This multivariate polynomial is called the algebraic normal form (ANF) of f .
Moreover, the coefficients of the ANF and the values of f satisfy:

au =
∑
x�u

f(x) and f(u) =
∑
x�u

ax,

where the sums are in F2 and x � y if and only if xi ≤ yi for all 1 ≤ i ≤ n.

Proof. We first show by induction on n that the ANF of an n-variable Boolean function can
be uniquely computed from its truth table.

• For n = 1, it is easy to check that the polynomial a1x + a0 with a1 = f(0) + f(1) and
a0 = f(0) is the unique polynomial equal to f .

• Induction step. Given an n-variable function f , we consider the two (n − 1)-variable
Boolean functions g and h defined by

g(x1, . . . , xn−1) = f(x1, . . . , xn−1, 0) and h(x1, . . . , xn−1) = f(x1, . . . , xn−1, 1) .

Then, we have

f(x1, . . . , xn) = (1 + xn)g(x1, . . . , xn−1) + xnh(x1, . . . , xn−1)
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or equivalently,

f(x1, . . . , xn) = g(x1, . . . , xn−1) + xn (g(x1, . . . , xn−1) + h(x1, . . . , xn−1)) .

We apply the induction hypothesis and denote by αu (resp. βu) for u ∈ Fn−1
2 the

coefficients of the ANF of g (resp. of h). We know that

αu =
∑
x�u

g(x) =
∑
x�u

f(x, 0) and βu =
∑
x�u

h(x) =
∑
x�u

f(x, 1) .

We then deduce that

f(x1, . . . , xn) = g(x1, . . . , xn−1) + xn (g(x1, . . . , xn−1) + h(x1, . . . , xn−1))

=
∑

u∈Fn−1
2

αu

n−1∏
i=1

xuii +
∑

u∈Fn−1
2

(αu + βu)

(
n−1∏
i=1

xuii

)
xn .

Therefore, the coefficients av, v = (v1, . . . , vn) ∈ Fn2 , of the ANF of f are given by

av =

{
αv1,...,vn−1 if vn = 0
αv1,...,vn−1 + βv1,...,vn−1 if vn = 1

From the expressions of the coefficients α and β, we deduce that

av =

{ ∑
u�(v1,...,vn−1) f(u, 0) if vn = 0∑
u�(v1,...,vn−1) f(u, 0) +

∑
u�(v1,...,vn−1) f(u, 1) if vn = 1

implying that
av =

∑
u�v

f(u) .

Conversely, the values of f are uniquely determined by its ANF since the function over F2n
2

which maps the value vector of f to the vector of coefficients of its ANF is an involution.
Indeed, for any y ∈ Fn2 , we have∑

u�y
au =

∑
u�y

∑
x�u

f(x)

=
∑
x�y

f(x)|{u ∈ Fn2 : x � u � y}|

=
∑
x�y

2wt(y)−wt(x)f(x) .

All terms in this sum are then zero modulo 2 unless x = y. Thus∑
u�y

au = f(y) ,

which means that the transformation we consider is an involution. �
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Example 10.1. Computing the ANF of the function defined in Table 10.1. Using
the previous theorem, we compute the coefficients of the ANF of this Boolean function:

a000 = f(000) = 0

a100 = f(100) + f(000) = 1

a010 = f(010) + f(000) = 0

a110 = f(110) + f(010) + f(100) + f(000) = 1

a001 = f(001) + f(000) = 0

a101 = f(101) + f(001) + f(100) + f(000) = 0

a011 = f(011) + f(001) + f(010) + f(000) = 1

a111 =
∑
x∈F3

2

f(x) = wt(f) mod 2 = 0 .

Thus, the ANF of f is
x1 + x1x2 + x2x3 .

The degree of f is then the degree of the largest monomial in the ANF of f , i.e.,

deg f = max
u∈Fn2 :au 6=0

wt(u) .

For instance the function considered in the previous example has degree 2.
It is worth noticing that there exist several other representations of Boolean functions which

may be more convenient than the ANF in some other contexts. For instance, the disjunctive
normal form represents the function by some products between variables and negations of
variables, which are added by an OR. A disjunctive normal form of the function defined in
Table 10.1 is

x1x2x3 ORx1x2x3 ORx1x2x3 ORx1x2x3 .

Such a representation may be more appropriate than the ANF when we want to determine
the smallest circuit which implements the function in a context where only AND, NOT and
OR gates are available, see [Weg87] for more details.

10.1.2 Computing the Algebraic Normal Form

The general form of the transformation which associates the coefficients of the ANF to the
value vector is

Mn : F2n
2 → F2n

2

a = (au, u ∈ Fn2 ) 7→ (bu, u ∈ Fn2 ) with bu =
∑

v�u av .

This function is called the binary Möbius transform. Indeed, Möbius inversion is a method
for inverting sums over a partially ordered sets. This general inversion formula appears in
many contexts in combinatorics. For instance, it leads to the principle of inclusion-exclusion
and to the expression of Euler φ-function [Rot64, Moe12]. In our context, we have proved in
Theorem 10.3 that the transformation Mn is an involution, so any algorithm for computing
the binary Möbius transform can be used both for computing the ANF from the value vector
and for computing the value vector from the ANF.
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The naive method for computingMn(a) consists in evaluating the sum of the coordinates
av of a over all positions v � u for the 2n successive elements u ∈ Fn2 . Since the sum defining
bu has 2wt(u) terms, the overall complexity of this algorithm is

n∑
i=0

(
n

i

)
2i = 3n .

But there exists a faster algorithm for computing the image of an element byMn which has
complexity n2n−1 only. This algorithm exploits the fact that if we decompose any vector
a = (au, u ∈ Fn2 ) into two halves, namely L(a) = (au,0, u ∈ Fn−1

2 ) and R(a) = (au,1, u ∈ Fn−1
2 ),

we get the following recursive formula:

L(Mn(a)) =Mn−1(L(a)) and R(Mn(a)) =Mn−1(L(a)) +Mn−1(R(a))

where the addition denotes the addition in F2n−1

2 . The corresponding algorithm then starts
from (au, u ∈ Fn2 ) where the values of u are written in lexicographic order. The k-th step,
for 1 ≤ k ≤ n, then computes the images by Mk of the 2n−k vectors of 2k consecutive
bits composing a. The result at Step k is then obtained from the result at Step (k − 1) by
splitting the vector into blocks of 2k consecutive bits, and for each block, the first half of the
block remains unchanged while the second half is replaced by the sum of both halves. This
iterative process is described by Algorithm 1. In this algorithm, the vectors (au, u ∈ Fn2 ) are
equivalently represented by 2n-bit arrays (a[i], 0 ≤ i < 2n), where n-bit integers are identified
with n-bit vectors.

Algorithm 1 Evaluating the Möbius transformMn.
Input: (a[i], 0 ≤ i < 2n)
Output: b =Mn(a)
for i from 0 to 2n − 1 do
b[i]← a[i]

end for
for k from 1 to n do
for i from 0 to 2n−k do
// Compute the image of the i-th 2k-bit block underMk

for j from 0 to 2k−1 − 1 do
b[2ki+ 2k−1 + j]← b[2ki+ j] + b[2ki+ 2k−1 + j] mod 2

end for
end for

end for
return b

Example 10.2. Computing the ANF of a 3-variable Boolean function. Let us denote
by f [0], . . . , f [7] the array representing the 8-bit value vector of the 3-variable Boolean function
f , namely f [i] = f(i0, i1, i2) where i =

∑2
j=0 ij2

i. Then, the operations performed during the
three successive steps of Algorithm 1 are described in Table 10.2.

Example 10.3. Computing the ANF of a 5-variable Boolean function in C. If the
value vector of the function is stored as 32-bit integer x, then the corresponding ANF is
computed by the following program.
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x ^= (x & 0x55555555) << 1;
x ^= (x & 0x33333333) << 2;
x ^= (x & 0x0f0f0f0f) << 4;
x ^= (x & 0x00ff00ff) << 8;
x ^= x << 16;

A more general program for any number of variables is given in [Jou09, Page 287] and can be
downloaded from http://www.joux.biz/algcrypt/PROGRAMS/Walsh_9-2.html.

10.2 Reed-Muller codes

10.2.1 Definition

Reed-Muller codes are named after Reed [Ree54] and Muller [Mul54]: Muller described the
codes while Reed proposed a majority-logic decoding algorithm for them. Reed-Muller codes
can be defined over Fq but we here focus on the binary case. Binary Reed-Muller codes can
be defined very easily in terms of Boolean functions.

Definition 10.4 (Reed-Muller codes). Let m be a positive integer and r an integer such
0 ≤ r ≤ m. The r-th order binary Reed-Muller code of length 2m, denoted by R(r,m), is the
set of the value vectors of all Boolean functions of m variables with degree at most r:

R(r,m) = {(f(x), x ∈ Fm2 ), f : Fm2 → F2 with deg f ≤ r} .

In particular R(0,m) is composed of the all-zero and the all-one 2m-bit words. It is also
known as the repetition code of length 2m. On the other extreme, R(m,m) contains all 2m-bit
words.

It is worth noticing that, exactly as Reed-Solomon codes, Reed-Muller codes can be seen as
evaluation codes: they are obtained by evaluating multivariate polynomials with coefficients
in F2 while Reed-Solomon codes in characteristic 2 are obtained by evaluating univariate
polynomials with coefficients in F2m .

Reed-Muller codes satisfy the following simple properties.

Proposition 10.5. Let m be a positive integer and r an integer such 0 ≤ r ≤ m.

1. R(r,m) is a linear code;

2. The value vectors of all monomials of degree at most r form a basis of R(r,m);

3. The dimension of R(r,m) is

dimR(r,m) =

r∑
i=0

(
m

i

)
;

4. R(r − 1,m) ⊂ R(r,m).

Example 10.4. Generator matrix of R(1, 3). R(1, 3) is a linear code of length 8 and
dimension 1 + 3 = 4. A generator matrix of R(1, 3) consists of the value vectors of all
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monomials of degree 0 or 1 in x1, x2, x3:
1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

 .

Indeed, the rows of this matrix are equal to the value vectors of the functions f(x1, x2, x3)
with respective ANF 1, x1, x2 and x3, where the inputs (x1, x2, x3) of the value vectors are
ordered lexicographically.

10.2.2 The (u|u+ v) construction

This general construction, described by Plotkin [Plo60], combines two codes of the same length
to derive a new code which is twice longer. In particular, it provides a recursive construction of
the family of Reed-Muller codes. We first describe the general construction and the properties
of the resulting code.

Proposition 10.6 (The (u|u+v) construction). Let C1 and C2 be two (non necessarily linear)
binary codes of the same length n, and of respective sizes M1, M2 and minimum distances d1

and d2. The (u|u+ v) construction forms a new code of length 2n as follows:

C = {(u|u+ v), u ∈ C1, v ∈ C2} .

Then C is a code of size M1M2 and minimum distance d = min(2d1, d2).

Proof. C has size M1M2 since it can easily be checked that two distinct pairs (u1, v1) and
(u2, v2) lead to distinct elements c1 and c2 in C. Let us now determine their Hamming
distance:

d(c1, c2) = d(u1, u2) + d(u1 + v1, u2 + v2) .

If v1 = v2, d(c1, c2) = 2d(u1, u2) ≥ 2d1. Otherwise, v1 6= v2, and we use that, for any two
vectors x and y,

wt(x+ y) = wt(x) + wt(y)− 2|Suppx ∩ Supp y|
≥ wt(x) + wt(y)− 2wt(x)

≥ wt(y)− wt(x) .

Then,
d(c1, c2) ≥ wt(u1 + u2) + wt(v1 + v2)− wt(u1 + u2) ≥ d2 .

Moreover, the lower bound d ≥ min(2d1, d2) is tight, since for any v ∈ C2, two codewords
u, u′ ∈ C1 at distance d1 lead to two codewords c1 = (u, u + v) and c2 = (u′, u′ + v) in C at
distance 2d(u, u′) = 2d1. Similarly, for any u ∈ C1, two codewords v, v′ ∈ C2 at distance d2

lead to two codewords c1 = (u, v) and c2 = (u, v′) in C at distance d(v, v′) = d2. �

A generator matrix for the code resulting from the (u|u+ v) construction is

G =

(
G1 G1

0 G2

)
,

where G1 and G2 are generator matrices for C1 and C2 respectively.
Clearly, any Reed-Muller code of length 2m can be constructed from Reed-Muller codes of

length 2m−1 as detailed in the following theorem.
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Theorem 10.7. Let m be a positive integer and r an integer such 1 ≤ r < m. Then,

R(r,m) = {(u|u+ v), u ∈ R(r,m− 1), v ∈ R(r − 1,m− 1)} .

Proof. For any Boolean function f of m variables and degree at most r, there exist two
functions of m− 1 variables, namely g and h, with deg g ≤ r and deg h ≤ r − 1 such that

f(x1, . . . , xm) = g(x1, . . . , xm−1) + xmh(x1, . . . , xm−1) .

The value vector vf of f can then be decomposed into two halves corresponding to the inputs
with xm = 0 (resp. with xm = 1). Then, we get

vf = (vg|vg + vh) ,

where vg and vh denote the value vectors of g and h and belong toR(r,m−1) andR(r−1,m−1)
respectively. �

Note that we can check that the dimensions of R(r,m) satisfy the relation given in Propo-
sition 10.6:

dimR(r,m− 1) + dimR(r − 1,m− 1) =

r∑
i=0

(
m− 1

i

)
+

r−1∑
i=0

(
m− 1

i

)

= 1 +

r∑
i=1

((
m− 1

i

)
+

(
m− 1

i− 1

))

= 1 +

r∑
i=1

(
m

i

)
= dimR(r,m) .

10.3 Weight distributions of Reed-Muller codes

10.3.1 Minimum distance of R(r,m)

The minimum distance ofR(r,m) can immediately be deduced from the (u|u+v) construction.

Theorem 10.8. Let m be a positive integer and r an integer such 0 ≤ r ≤ m. Then, R(r,m)
has minimum distance 2m−r. Moreover, the value vectors of the monomials of degree r are
minimum-weight codewords of R(r,m).

Proof. Clearly, the value vector of any monomial of m variables and degree r has weight 2m−r.
Then, we only have to prove that dminR(r,m) ≥ 2m−r, by induction on m.

• For m = 1, R(0, 1) consists of the value vectors of the constant functions, namely (00)
and (11), implying that dminR(0, 1) = 2. Similarly, R(1, 1) is composed of all four
elements of F2

2, implying that dminR(1, 1) = 1.

• Induction step. By combining Theorem 10.7 with Proposition 10.6, we obtain that

dminR(r,m) = min (2dminR(r,m− 1), dminR(r − 1,m− 1))

= min
(
2m−r, 2m−r

)
= 2m−r .
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�

Example 10.5. Minimum distance of R(1, 5). The Reed-Muller code R(1, 5) has been
used for correcting errors during the transmission of the pictures taken by the Mariner 9 space
probe from Martian orbit. An appropriate trade-off between the error-correction capability
and the information rate was needed for addressing the bad quality of the communications
and the power constraints on board. Each pixel in these images was represented by one out
of 64 grayscale values. This 6-bit pixel was then encoded into a 32-bit value by R(1, 5), which
is a code of length 32 and dimension 6. The minimum distance of this code is 25−1 = 16,
implying that up to 7 transmission errors can be corrected. More than 7000 pictures have
been transmitted by Mariner 9 with this procedure. Details on the decoding algorithms used
for space communications can be found in [McE04].

The complete weight distribution of R(r,m) is known for a few values of r only.

10.3.2 Weight distribution of R(1,m)

Proposition 10.9. The first-order Reed-Muller code R(1,m) is composed of the all-zero word,
of the all-one word, and of (2m+1 − 2) words of weight 2m−1.

Proof. By induction on m.

• For m = 1, R(1,m) is composed of four vectors: (00), (11), (01) and (10).

• Induction step. From Theorem 10.7, we know that R(1,m) can be decomposed into

R(1,m) = {(u|u), u ∈ R(1,m− 1)} ∪ {(u|ū), u ∈ R(1,m− 1)}

where ū denotes the bitwise complement of u. Since R(1,m − 1) contains 1 word of
weight 0, 1 word of weight 2m−1 and (2m − 2) words of weight 2m−2, we deduce that
the first set in the decomposition contains 1 word of weight 0, 1 word of weight 2m and
(2m−2) words of weight 2m−1. The second set is composed of 2m words of weight 2m−1.
The result then follows.

�

Since the non-constant words in R(1,m) are the value vectors of all affine functions, we
deduce that any m-variable Boolean function of degree 1 has weight 2m−1. This can also be
observed from the fact that, for f(x) = a · x+ ε with a ∈ Fm2 and ε ∈ F2,

{x ∈ Fm2 : f(x) = 1} = {x ∈ Fm2 : a · x = 1 + ε} =

{
〈a〉⊥ if ε = 1
Fm2 \ 〈a〉⊥ if ε = 0

The support of an affine function is then a hyperplane or the complement of a hyperplane,
and has size 2m−1.
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10.3.3 Weight distribution of R(m− 1,m)

Proposition 10.10. The Reed-Muller code R(m−1,m) is the code with parameters [2m, 2m−
1, 2] composed of all 2m-bit words of even weight.

Proof. We first observe that R(m−1,m) contains half of the 2m-bit words since its dimension
is
∑m−1

i=0

(
m
i

)
= 2m − 1. Then, we only need to prove that any codeword in R(m− 1,m) has

an even weight. This comes directly from Theorem 10.3 which shows that the coefficient of
degree m in the ANF of an m-variable Boolean function f is equal to the parity of the weight
of its value vector. �

An equivalent formulation of this result, in terms of Boolean functions, is as follows.

Corollary 10.11. The value vector of a Boolean function f of n variables has an odd weight
if and only if f has degree n.

This implies that Boolean functions with maximal degree cannot be used in most crypto-
graphic applications since their output distribution is biased.

10.3.4 Weight distribution of R(2,m)

Besides R(0,m), R(1,m), R(m − 1,m) and R(m,m) the complete weight distribution of
R(2,m) is also known [SB70]. The proof can be found in [SB70] or in Chapter 15,§ 2 of [MS77].

Proposition 10.12. The weights of the codewords of the second-order Reed-Muller code of
length 2m are of the form

w = 2m−1 or w = 2m−1 ± 2m−1−h with 0 ≤ h ≤
⌊m

2

⌋
.

Moreover, the corresponding weight distribution A0, . . . , A2m is given by

A0 = A2m = 1

A2m−1±2m−1−h = 2h(h+1) ×
h∏
i=1

(2m−2i+2 − 1)(2m−2i+1 − 1)

(22i − 1)

A2m−1 = 21+m+(m2 ) − 2
2m−1−1∑
w=0

Aw .

10.3.5 Duality

We have seen that R(m − 1,m) consists of all even-weight words, i.e., R(m − 1,m) = 〈1〉⊥
where 1 denotes the all-one vector. This means that R(m − 1,m) is the dual of R(0,m).
Actually, this relationship is more general as shown by the following theorem.

Theorem 10.13. Let m be a positive integer and r an integer such 0 ≤ r < m. Then,

R(r,m)⊥ = R(m− r − 1,m) .
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Proof. Let us consider two codewords x ∈ R(r,m) and y ∈ R(m − r − 1,m). Then, their
scalar product is

x · y =

2m∑
i=1

xiyi mod 2 = wt ((xiyi)1≤i≤2m) mod 2 .

This last vector (xiyi)1≤i≤2m is the value vector of the function h = fg where f and g are
the Boolean functions corresponding to x and y respectively. By definition, deg f ≤ r and
deg g ≤ (m− r−1). It follows that h has degree at most (m−1). From Proposition 10.10, we
deduce that its value vector has an even weight. Therefore, x · y ≡ 0, i.e., R(m− r − 1,m) ⊆
R(r,m)⊥. Equality between both codes is then deduced from their dimensions. �

In particular, for odd m, the Reed-Muller code R(m−1
2 ,m) is a self-dual code with param-

eters [2m, 2m−1, 2
m+1

2 ].
The weight distribution of a code can be computed from the weight distribution of its dual

by MacWilliams identity. It follows that the weight distributions of R(r,m) for r ≤ 2 and
r ≥ m− 3 are known.

Example 10.6. Weight distributions of all Reed-Muller codes of length 32.

• R(0, 5) is the repetition code of length 32 and dimension 1. Its weight distribution is

A0 = 1 and A32 = 1 .

• From Proposition 10.9, the weight distribution of R(1, 5) is

A0 = A32 = 1 and A16 = 62.

• From Proposition 10.12, the weight distribution of R(2, 5) is

A0 = A32 = 1, A8 = A24 = 620, A12 = A20 = 13888 and A16 = 36518 .

We can check that this code is a self-dual code by applying the MacWilliams transfor-
mation to its weight enumerator

WC(X,Y ) = X32+620X24Y 8+13888X20Y 12+36518X16Y 16+13888X12Y 20+620X8Y 24+Y 32 .

We get
2−16WC(X + Y,X − Y ) = WC(X,Y ) .

• The weight distribution of R(3, 5) can be deduced from the weight distribution of its
dual, C⊥ = R(1, 5). We have

WC⊥ = X32 + 62X16Y 16 + Y 32 .

Then,

WC(X,Y ) = 2−6WC⊥(X + Y,X − Y )

= X32 + 1240X28Y 4 + 27776X26Y 6 + 330460X24Y 8 + 2011776X22Y 10

+7063784X20Y 12 + 14721280X18Y 14 + 18796230X16X16 + 14721280X14Y 18

+7063784X12Y 20 + 2011776X10Y 22 + 330460X8Y 24 + 27776X6Y 26

+1240X4Y 28 + Y 32 .

• From Proposition 10.10, R(4, 5) is the set of all 32-bit words of even weight.

• R(5, 5) is equal to F32
2 .



Error-Correcting Codes and Symmetric Cryptography - A. Canteaut 17

10.3.6 Other properties of the weights of R(r,m)

Determining the weight distribution of R(r,m) when 3 ≤ r ≤ m − 4 is an open problem.
Some partial information is known, including the minimum distance (Theorem 10.8) and the
number of low-weight codewords, i.e., the number of codewords of weight w for dmin ≤ w ≤
2.5dmin [KT70, KTA76].

Another information is that the weight of any codeword in R(r,m) is divisible by some
power of 2 whose exponent depends on r and m.

Proposition 10.14. Let m be a positive integer and r an integer such 0 < r ≤ m. Then, the
weights of all codewords in R(r,m) are divisible by

2d
m
r
e−1 .

This theorem was originally proved by Solomon and McEliece [SM66], but it is usually
presented as a consequence of a more general theorem due to McEliece [McE72] on the divis-
ibility of the weight of cyclic codes. A simpler proof can be derived from a classical formula
for computing the weight of a Boolean function from its ANF (see e.g. [MM94] or [CHLL97,
Page 240]).

This chapter does not present any decoding algorithms for Reed-Muller codes. However,
some of them will be described later in the chapters devoted to cryptographic applications.
Indeed, decoding a given vector of length 2m with respect to R(r,m) is equivalent to finding
the best approximation of a given Boolean function by a function of degree r. This problem,
for small r, appears in several cryptanalytic techniques including linear cryptanalysis.
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Chapter 11

Stream Cipher Basics

Symmetric cryptography is widely used since it offers much better performance than public-key
encryption. This comparison holds when considering both software-oriented and hardware-
oriented platforms. For software implementations on a usual processor, classical asymmetric
encryption requires several dozens (or even several hundreds) of kilocycles of the processor
for encrypting/decrypting one byte. The symmetric encryption standard, the AES, takes be-
tween 20 and 30 cycles for the same operation. More precise figures on several platforms are
available on the website of eBACS, a benchmarking suite of cryptographic systems [eba]. All
of them show that symmetric encryption is several orders of magnitude faster than asymmet-
ric encryption. Among all possible symmetric ciphers, many dedicated stream ciphers are
even faster than common block ciphers. For instance, the throughputs of stream ciphers like
Snow 2.0 or Salsa20 correspond to around 5 cycles for encrypting one byte.

The same situation holds when considering the hardware performance. There are many
ways to quantify hardware performance depending on the targeted platform: minimal number
of gates in a circuit implementing the cipher, power consumption, latency... But for any
of these quantities, symmetric encryption outperforms asymmetric encryption. And some
stream ciphers have been designed for achieving extremely good performance in constrained
environments like on embedded systems.

11.1 Basic principle

11.1.1 Synchronous additive stream ciphers

Stream ciphers are encryption schemes: they include an encryption function and a decryption
function which can handle messages of an arbitrary length. In this sense, they cannot be
compared with block ciphers, which handle fixed-length inputs only. While formally defining
block ciphers is very easy, defining stream ciphers in general is not. For instance, block
ciphers with some particular modes of operation (like the CTR mode) are stream ciphers (see
Section 11.4.3 for details).

Here, we focus on synchronous additive stream ciphers. The encryption function in a syn-
chronous additive stream cipher consists in adding bitwise to the plaintext a binary sequence
of the same length, named the keystream (or the running-key). The keystream, denoted by
s = (st)t≥0 is generated independently from the plaintext and from the ciphertext. It should
be noted that there exists another family of stream ciphers, called self-synchronizing stream
ciphers, which is not captured by this definition. The (almost single) practical example is the

19
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CFB mode of operation applied to any block cipher. Self-synchronizing stream ciphers are
mainly dedicated to contexts where latency is of primary importance. Therefore, the cipher-
text is sent in a very long stream, implying that decryption must often be resynchronized.
However, it appears that these ciphers are no longer used today in applications. Instead,
synchronous stream ciphers are used: the message is sent as a succession of packets, and any
lost packet is resent. For instance in the GSM standard, messages are split in 114-bit frames,
corresponding to 4.6 milliseconds. The keystream must then depend on the frame number,
which corresponds to an additional parameter named the initial value.

���- -
?plaintext

m0,m1, ...
ciphertext
c0, c1, ...

keystream
s0, s1, ...

+

Figure 11.1: Additive synchronous stream cipher.

The oldest and most prominent synchronous stream cipher is obviously the Vernam cipher
(aka. one-time-pad) [Ver26]. In the Vernam cipher, each keystream bit st is chosen at random,
independently from the other ones. The Vernam cipher is then a perfect cipher, i.e., an
unconditionally secure cipher as defined by Shannon [Sha48]. This means that the knowledge
of the ciphertext provides absolutely no information about the plaintext. Indeed, ifM denotes
the n-bit plaintext, C the ciphertext and S the keystream, we have

Pr[C = c|M = m] = Pr[S = m+ c] = 2−n

and since this holds for any value m, we deduce that

Pr[C = c] =
∑
m

Pr[C = c|M = m]Pr[M = m] = 2−n
∑
m

Pr[M = m] = 2−n .

This implies that the Vernam cipher is perfect. Indeed,

Pr[M = m|C = c] =
Pr[M = m and C = c]

Pr[C = c]

=
Pr[C = c|M = m]Pr[M = m]

Pr[C = c]

=
2−nPr[M = m]

2−n
= Pr[M = m] .

In other words, the Vernam cipher is unbreakable. The Vernam cipher is then optimal in terms
both of security and of performance. But a major issue is that it requires the use of a secret
quantity (the keystream) which has the same length as the plaintext to be encrypted. This is
actually a necessary condition for any perfect cipher [Sha49]. Exchanging such a secret in a
secure way is of course unpractical in the vast majority of applications, and perfect ciphers have
only been used in some high-level communications like diplomatic cables or the most sensitive
governmental communications (e.g., in the Moscow-Washington hotline [Kah67, Pages 715-
716] or for Soviet diplomatic communications). Obviously, the security of the cipher completely
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collapses if the keystream is not random. For instance, the fact that some keystream portions
have been used twice has been exploited by the United States Army Signal Intelligence Service
(a forerunner of the NSA) to decrypt some Soviet communications during the so-called Venona
project [Cro95].

11.1.2 Pseudo-random generators

Synchronous stream ciphers can be seen as practical variants of the Vernam cipher. The key
idea is that the keystream s is not a random sequence anymore, but a pseudo-random sequence
derived from a shorter secret quantity which can be exchanged much more easily. The pro-
cess which maps a short quantity to an arbitrary-length sequence s is called a cryptographic
pseudo-random generator. Informally, it is a finite-state automaton which produces in a de-
terministic way a long sequence s from a (short) seed such that, for an adversary who knows
everything except the seed, it is impossible to distinguish s from a truly random sequence
with a significantly lower complexity than an exhaustive search for the seed.

This notion must be distinguished from the widely-used notion of random generator, which
also corresponds to a process which generates a random-looking sequence. Such random
generators are used for generating cryptographic keys for instance. But, they differ from the
previous notion in the sense that they are not deterministic. In other words, the generated
sequence is not reproducible. Random generators include some techniques based on physical
methods exploiting various entropy sources like radioactive decay or thermal noise. Software-
oriented random generators may also use as an entropy source some physical events available
to the operating system, mainly the precise timing of interrupts (time between user keystrokes,
task-scheduling, network hits, disk-head seek times...)a.

Deterministic pseudo-random generators include the random() or rand() function which
can be found in any high-level programming language: in a program, n consecutive calls to
random() produce n random numbers, but all executions of the program generate the same
sequence unless the seed of the generator has been modified by some initialization function
(usually called srandom() or srand()). Such pseudo-random generators aim at producing
sequences with good statistical properties which can be used in simulations (e.g. for the
Monte-Carlo method). However, the output sequence can often be distinguished from a truly
random sequence by anyone who knows the specifications of the generator. This is clearly the
case for most implementations of random().

A pseudo-random generator then produces at each time instant t an m-bit digitb st which
is determined by the value of its internal state xt. It can then be defined by the following
three building-blocks (see Figure 11.2).

• an initialization function, which determines the initial state of the generator, x0, from
the secret key and a public initial value, IV (IV usually corresponds to a frame number).
This initialization may be split into two different steps: the first one, named key-loading,
computes some intermediate quantity which depends on the key only (and not on the
IV); the second one, named IV injection or resynchronization, computes the initial state
x0 from the previously computed intermediate value and from the IV. Decomposing the

a/dev/random is a special file under Unix-like environments which serves as pseudo-random generators. A
more sophisticated pseudo-random generator is Havege http://www.irisa.fr/caps/projects/hipsor/[SS03].

bMany stream ciphers use binary pseudo-random generators (i.e., m = 1), but some generators rather
produce longer digits, like bytes or words, depending on the implementation target.
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Figure 11.2: Pseudo-random generator for an additive stream cipher.

initialization like this allows a less expensive procedure for changing the IV without
changing the key. Indeed, in most applications, the IV is changed much more often than
the key, especially in communication protocols using small packets. For instance, in the
GSM standard, the IV is modified every 228 bits while the key remains the same during
the whole conversation.

• a transition (or next-state) function, denoted by Φ, which modifies the internal state
between time t and time (t+ 1). This function may depend on the key, on the IV, and
may vary with time. But it is fixed in many hardware-oriented generators, for some
obvious implementation reasons.

• a filtering function, denoted by f , which at each time instant, extracts the m-bit output
digit st from the internal state xt. Exactly as the transition function, the filtering
function may depend on the key, on the IV and vary with time, but it is usually fixed
for hardware-oriented ciphers.

11.1.3 General functionalities of stream ciphers and usage

Synchronous stream ciphers present some interesting functionalities.

• Encryption or decryption can start as soon as a single bit of the message has been
received. This is not the case of a block cipher used with CBC mode for instance, where
a whole plaintext block must be received before encryption starts. For this reason,
stream ciphers have a low-latency, and they do not require any message buffering.

• Synchronous stream ciphers do not require any padding, i.e., the addition of some bits
in order to get a message whose length is a multiple of the block size. This is suitable for
instance in low-bandwidth communications, or in protocols which require the transmis-
sion of many small packets (in this case, padding may represent a non-negligible part of
the transmitted data).

• Decryption does not propagate transmission errors. Indeed, if one bit of the ciphertext
has been corrupted during the transmission, it will affect a single bit of the resulting
plaintext. This situation is very different from other encryption schemes, like a block
cipher in CBC mode, where a single corrupted bit affects the decryption of a whole
plaintext block.
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For all these reasons, stream ciphers are well-adapted to noisy or low-bandwidth commu-
nications. Block-cipher-based stream ciphers, such as the AES with CTR mode, can be used
as a first choice in many applications. However, in some particular applications, dedicated
stream ciphers must be privileged, for instance if a high encryption/decryption throughput or
a very low latency is needed, or in resource-constrained environments like embedded systems
(where the size of the circuit, the power consumption... must be minimized).

11.2 Models of attacks

The security of additive stream ciphers is often evaluated by its resistance to known-plaintext
attacks. Indeed, the knowledge of N bits of plaintext and of the corresponding ciphertext bits
is equivalent to the knowledge of N keystream bits. In this context, it is clear that stronger
attack models, like chosen-plaintext attacks do not provide any additional information to the
attacker. Ciphertext-only attacks can also be considered in a very few cases where some
statistical properties of the plaintext source are exploited. But, in the following, we always
assume that N keystream bits are known by the attacker. From this knowledge, she might
have different goals, corresponding to the following four different types of attacks.

• key-recovery attacks aim at recovering the secret key from the knowledge of the keystream
bits;

• initial-state-recovery attacks aim at recovering the whole initial state of the generator
(recovering any complete internal state of the generator is often enough for determining
the initial state). Obviously, the knowledge of the secret key is sufficient for recovering
the initial state, but the converse does not hold in general. If the transition and filtering
functions are public, these attacks enable the adversary to compute as many keystream
bits as she wants from this initial state, but they do not enable her to generate any
keystream sequence produced from the same key and a different IV. Therefore, they
usually have a much more limited impact than key-recovery attacks, especially in pro-
tocols handling short packets since the packets are encrypted with different IVs within
a session.

• next-bit-prediction attacks consist in predicting the value of the next bit from the knowl-
edge of N consecutive keystream bits.

• distinguishing attacks aim at determining whether a given N -bit sequence has been
produced by the pseudo-random generator from some secret key, or whether it is a truly
random sequence.

Distinguishing attacks are obviously much less powerful than all the other mentioned classes.
They can nevertheless provide the adversary with some information on the plaintext. For
instance, they can be exploited for checking whether an eavesdropped ciphertext corresponds
to a given plaintext or not. Such attacks may then be a threat in a context when only a few
plaintexts are possible. However, it can be shown that the existence of distinguishing attacks
with polynomial complexity is equivalent to the existence of next-bit-prediction attacks [Yao82,
BM84]. For this reason, a pseudo-random generator is usually considered secure if it resists
all distinguishing attacks having complexity less than the complexity of an exhaustive search
for the secret key.
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All previously mentioned attacks exploit the knowledge of N keystream bits generated
from the same key. However, these keystream bits may be produced from the same IV, or
from different IVs. In this second scenario, the IV may be controlled by the attacker (chosen-
IV attack) or not. The chosen-IV model is quite powerful but provides a realistic model for
the contexts where the IV is randomly chosen (see e.g. [BG07]).

11.3 Generic attacks on stream ciphers

Every building-block in a pseudo-random generator must be chosen with care. In particular,
some major criteria can be deduced from the existence of generic attacks, i.e., attacks which
apply to any generator with similar parameters. As we will see, these attacks impose some
general conditions on the building-blocks of the generator.

11.3.1 Period of the sequence of internal states

Since the number of possible internal states of the generator is finite, the sequence of the
consecutive internal states (xt)t≥0 produced from any given initial state x0 is an ultimately
periodic sequence, i.e., there exists some t0 ≥ 0 such that (xt)t≥t0 is periodic. Obviously,
the corresponding period is upper-bounded by the number of possible internal states. An
important requirement is then that the period of the sequence of internal states (xt)t≥0 must be
large, for any possible initialization. Otherwise, the corresponding keystream sequence would
have a small period, implying that the knowledge of a few keystream bits would be sufficient
for predicting the whole sequence. In other words, for any initial state x0, the sequence of all
consecutive internal states (Φt(x0))t≥0 must have a high period. In our context, high period
means that the period must always be higher than the maximal length allowed for a keystream
produced from a single key/IV pair.

The smallest period of (Φt(x0))t≥0 can be derived from some parameters of the so-called
functional graph of the transition function Φ.

Definition 11.1 (Functional graph of a function). Let F be a function from a finite set E to
itself. The functional graph of F is the graph whose vertices are the elements of E and whose
directed edges are the pairs (x, F (x)) for all x ∈ E.

An example of a functional graph is depicted on Figure 11.3.

Figure 11.3: Functional graph of the function F defined from {1, . . . , 20} to itself by F (x) =(
(x− 1)2 + 2 mod 20

)
+ 1 (from [Röc09, Page 72]).
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Non-bijective transition functions.

The main parameters of the functional graph of a random function have been investigated
in [FO90].

Proposition 11.2. [FO90][FS09, Pages 462-463] The main parameters of the functional
graph of a random function from a set of size N to itself have the following asymptotic forms
as N tends to infinity:

• expected number of connected components in the graph ∼ 1
2 lnN

• expected size of the largest component ∼ dN with d ' 0.75782

• expected number of points on a cycle ∼
√

πN
2

• expected length of the longest cycle ∼ κ
√
N with κ = 0.78248.

In particular, the functional graph of a random function has a small number of connected
components. Around 76 % of all points in the graph are grouped together in the same
component, called the giant component. This giant component has a large cycle, of size close
to
√
N . As an illustration, Figure 11.4 extracted from [QD88] depicts a part of the functional

graph of a function from F56
2 to itself derived from the DES block cipher: K 7→ DESK(0) where

the 64-bit output of DES is truncated to get a 56-bit value. This functional graph has a giant
cycle. The size of this giant cycle, estimated from the scale of the picture, is approximately
5× 108 ' 229, which is close to the square root of 256.

It is worth noticing that these statistics are extensively used for estimating the complexity
of several algorithms searching for collisions in the functional graph of a function, including
Floyd’s cycle-finding algorithm, Pollard’s rho-method... (see Chapter 7 in [Jou09] for details
on these algorithms).

In the context of a pseudo-random generator with transition function Φ, we are interested
in the distribution of the period of the sequence (Φt(x0))t≥0 when x0 varies, which corresponds
to the sizes of the cycles in the functional graph of Φ. For a random function Φ, the average
values of the pre-period and period of the sequence (Φt(x0))t≥0 are as follows.

Proposition 11.3. Let Φ be a random function from a set of size N to itself. Then, the
expectations of the period and of the pre-period of the sequence (Φt(x0))t≥0 are both asymptotic

to
√

πN
8 as N tends to infinity.

For any pseudo-random generator with an n-bit internal state and a random transition
function Φ, this means that, for most initial states x0, the sequence of internal states produced
after roughly 2

n
2 clocks has period close to 2

n
2 . Then, after a relatively small number of clocks,

all internal states belong to a set of size roughly 2
n
2 . In other words, there is a severe entropy

loss since the cost of an exhaustive search for the internal state decreases from 2n to 2
n
2 .

This weakness can also be exploited in more sophisticated attacks like time-memory-data
trade-offs attacks (see Section 11.3.2). This entropy loss comes from the non-bijectivity of the
function. Choosing a non-bijective function as a transition function then requires a careful
analysis. In particular, it implies that the size of the internal state should be large enough
for avoiding these attacks, and this may affect the performance of the cipher. Several stream
cipher proposals use a non-bijective transition function, including MICKEY [BD08, BD06],
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Figure 11.4: Partial functional graph of a function from F56
2 to itself derived from the DES

block cipher [QD88].

recommended in the eSTREAM portfolio [ECR05], or the F-FCSR cipher [ABL08]. A precise
evaluation of the entropy of the internal state after r iterations of these generators can be
found in [HK05, Röc08b, Röc08a].

Bijective transition functions.

In order to avoid any state entropy loss, a permutation can serve as a transition function.
In this case, all connected components in the functional graph of the permutation are cycles
since a given vertex has exactly one incoming edge. As an illustration, Figure 11.5 extracted
from [FS09] depicts the functional graphs of six random permutations of a set of size 500.

The expectations of the main parameters of the functional graph of a random permutation
are as follows.

Proposition 11.4. [FS09, Page 175] For any r ≤ N , the expectation of the number of cycles
of length r in the functional graph of a random permutation of a set of size N is 1

r .
The total number of cycles is the graph is HN where HN =

∑N
i=1

1
i is the harmonic

number which can be approximated by HN ∼ lnN + γ where γ ' 0.57721 is the so-called
Euler’s constant.

This implies that the functional graph of a randomly chosen permutation contains a few
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Figure 11.5: Functional graphs of six randomly chosen permutations of a set of size 500,
extracted from [FS09, Page 176].

cycles only: some short cycles which include a very small proportion of points, and one or a few
long cycles. It can be proved for instance that the probability that a random permutation has
a cycle of length greater than or equal to N/2 is close to ln 2 ' 0.69 [FS09, Page 176]. These
results imply that the use of a random transition permutation avoids an important entropy
loss. However, the existence of short cycles should be taken into account since they correspond
to initial states producing a keystream with a short period. Either these unsuitable initial
states can be explicitly determined and removed from the set of possible initial states (this
corresponds to the situation of LFSR-based transition functions, as we will see in Chapter 12),
or the internal state is sufficiently large so that the proportion of unsuitable initial states can
be considered as negligible.

It appears from this analysis that the choice of the transition function in a pseudo-random
generator can follow one of the two alternative design strategies:

• Choose for Φ a permutation with some known mathematical properties operating on a
relatively small internal state: the minimal period of (Φt(x0))t≥0 can then be proved to
be close to 2n where n is the size of the internal state. Short cycles are avoided either
because the proportion of unsuitable initial states is negligible, or because these initial
states cannot be obtained by the initialization process. LFSR-based generators follow
this first approach.

• Choose a random-looking function or permutation operating on a relatively large internal
state: the period of (Φt(x0))t≥0 is then expected to be close to 2

n
2 for most initial states

x0. Short cycles may exist but are unlikely to occur. Table-driven generators like RC4
follow this second approach (see Section 11.4.4).

11.3.2 Time-Memory-Data Trade-off attacks

Principle. The basic principle of time-memory trade-off (TMTO) attacks has been intro-
duced by Hellman in 1980 [Hel80] for analyzing block ciphers, and then improved in the context
of some stream ciphers by Babbage [Bab95] and Golic [Gol97]. These techniques are generic
methods for inverting a one-way function, i.e., a function F from E into F which is such that
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computing F (x) from x is easy, but finding a preimage x of an element y ∈ F is difficult. For
finding some x ∈ E such that F (x) = y, one of the following two trivial algorithms can be
used.

• Exhaustive search: it consists in computing the images under F of all elements x ∈ E
until one such that F (x) = y has been found. This algorithm is very time-consuming
and must be repeated for each new challenge y.

• Codebook attack: it consists in precomputing the images of all x ∈ E under F and in
storing in memory all pairs (x, F (x)) indexed by the values of F (x). For each new
challenge y, a simple search in this look-up table is enough for finding an x with F (x) =
y. This algorithm also requires the evaluation of F on all elements in E , but this
computation is independent from the challenge. This is then a precomputation step and
it has to be done once for all. The on-line step of the attack, which depends on the
challenge, is extremely fast: its complexity is logarithmic in the size of the precomputed
table (by dichotomic search), or even constant if an appropriate data structure is used. In
this sense, this algorithm compares very favorably with the exhaustive search. However,
its main drawback is the memory requirement, since all pairs (x, F (x)) need to be stored.

Time-memory trade-off attacks then offer better trade-offs between the previous two methods.
They consist of two steps: a precomputation step building a table, and an on-line step which
uses the table for finding a preimage of the challenge faster than the exhaustive search. The
key issue in this type of algorithms is to find a suitable trade-off between the size of the table
(memory complexity) and the time complexity of the on-line phase.

Algorithm 2 provides a method for finding a preimage of a given challenge y for some
function F from E to itself.

Algorithm 2 Basic time-memory trade-off algorithm for inverting F : E → E ; k is a parameter
of the algorithm.
/* Precomputation phase */
Randomly choose M elements x1, . . . , xM in E
for i from 1 to M do
zi ← F k(xi).
Store (xi, zi) in a table T , sorted by the zi

end for

/* On-line phase */
Input: y ∈ E .
for j from 0 to (k − 1) do
yj ← F j(y)
Search in the table whether there exists some i such that zi = yj
if (xi, yj) is in the table then
if F k−j(xi) = y then
return F k−j−1(xi).

end if
end if

end for
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It can be checked that the value x = F k−j−1(xi) returned by Algorithm 2 is a preimage
of y. Indeed, by construction, yj = F k(xi) = F j(y), implying that F j(y) = F j

[
F k−j(xi)

]
.

Then, if this collision on two images under F j comes from a collision on the corresponding
preimages, i.e. F k−j(xi) = y, we get that F (x) = y. However, when F is not a permutation,
a collision on the images of F j does not necessarily imply a collision on the corresponding
inputs. Such situations correspond to false alarms, which are discarded by testing whether
F k−j(xi) = y.

A preimage can be found by this technique if y belongs to the set
⋃M
i=1{F j(xi), 0 ≤ j < k}.

We need then to be sure that this union of sets covers a large portion of E . However, the
number of distinct elements covered by these sets is not equal to Mk in general. Indeed, if
F behaves like a random function, then the sequence (F j(xi))j≥1 is expected to cycle after
j '

√
|E|. This implies that k should not be too large if we want all F j(xi) to be distinct

when j varies.
A second issue is that two sequences starting from different xi can merge at some point. In

particular, if the first ν sets X (xi) = {F j(xi), 0 ≤ j < k} are all composed of distinct points,
then any new set X (x) will collide with the previous ones as soon as νk2 ≥ N . Then, there
is no advantage of increasing parameters M and k beyond Mk2 = N . The problem is that,
with this condition, only a small proportion of elements of E is covered by the precomputed
table, as shown by the following proposition. In other words, the success probability of the
algorithm remains rather small.

Proposition 11.5. [Hel80] Let F be modeled as a random function from a set of size N to
itself. If Mk2 = N with both M and k large, then the probability of success of Algorithm 2 is
close to 0.8Mk/N .

Proof. We first compute a lower bound on the size of the union of all sets

Xi = {F j(xi), 0 ≤ j < k}, for 1 ≤ i ≤M .

For a given pair (i0, j0), the probability that F j0(xi0) is new is lower-bounded by the proba-
bility that all F j(xi0) for 0 ≤ j ≤ j0 are new, i.e., by

N −A
N

× N −A− 1

N
× . . .× N −A− j0

N

where A denotes the size of ∪i0−1
i=1 Xi. Obviously, A ≤ (i0 − 1)k which implies that

Pr[F j0(xi0) is new] ≥
(
N − i0k
N

)j0+1

.

The success probability pS of the algorithm is equal to the ratio between the expected size of
∪Mi=1Xi and N . Then, we get that

pS ≥
1

N

M∑
i=1

k−1∑
j=0

(
1− ik

N

)j+1

.
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We now use the identity (1− x)
∑k−1

j=0 x
j = (1− xk), applied to x = 1− ik/N . We obtain

pS ≥ 1

k

M∑
i=1

1

i

(
1− ik

N

)[
1−

(
1− ik

N

)k]

≈ 1

k

M∑
i=1

1

i

[
1−

(
1− ik

N

)k]

≈ 1

k

M∑
i=1

1

i

(
1− exp

(
− ik

2

N

))
where the last approximation comes from

k ln

(
1− ik

N

)
≈ − ik

2

N

when ik/N � 1. By approximating this sum by an integral, we eventually get

1

k

M∑
i=1

1

i

(
1− exp

(
− ik

2

N

))
=

1

k

M∑
i=1

k2

N
×

(
1− exp

(
− ik2

N

))
ik2

N

' 1

k

∫ Mk2

N

0

1− e−x

x
dx

=
Mk

N
H

(
Mk2

N

)
,

where H is the function H(u) = 1
u

∫ u
0

1−e−x
x dx. When Mk2/N = 1, then H(1) ' 0.8. �

For obtaining a better coverage of E by the set X, an attempt could be to increase M or
k. However, it appears that when u = Mk2/N is greater than 1, the value of H(u) decreases
very fast. In other words, increasing either M or k beyond Mk2 = N would lead to points
which are already covered by the table.

The solution proposed by Hellman [Hel80] then consists in constructing several independent
tables. Each of these tables is obtained by running Algorithm 2 on a slightly modified version
of F , namely h` ◦ F , where h` is a random permutation of E whose role is to “diversify” the
computations. This leads to Algorithm 3. Now, for each `, we search for some pair (i, j) such
that

(h` ◦ F )j(h`(y)) = (h` ◦ F )k(xi)

and we hope that this corresponds to a collision

h`(y) = (h` ◦ F )k−j(xi) ,

or equivalently since h` is a permutation

y = F
[
(h` ◦ F )k−j−1(xi)

]
.

When considering L independent tables corresponding to L independent permutations h`,
1 ≤ ` ≤ L, we get that, since Mk/N � 1, the probability that y belongs to the sets X
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Algorithm 3 Hellman’s time-memory trade-off algorithm for inverting F : E → E ; k is a
parameter of the algorithm.
/* Precomputation phase */
for ` from 1 to L do
Randomly choose M elements x1, . . . , xM in E
for i from 1 to M do
zi ← (h` ◦ F )k(xi).
Store (xi, zi) in a table T`, sorted by the zi

end for
end for

/* On-line phase */
Input: y ∈ E .
for ` from 1 to L do
for j from 0 to (k − 1) do
yj ← (h` ◦ F )j(h`(y))
Search in Table T` whether there exists some i such that zi = yj
if (xi, yj) is in the table then
if (h` ◦ F )k−j(xi) = h`(y) then
return (h` ◦ F )k−j−1(xi).

end if
end if

end for
end for
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generated from each single h` is small and close to 0.8Mk/N . Then, for L such independent
tables, the overall success probability is

1−
(

1− 0.8
Mk

N

)L
≈ 1− exp

(
0.8MkL

N

)
.

Now, choosing MkL ' N leads to a success probability of 1− e−0.8 = 0.55.
The time complexity of the on-line phase and the total memory cost of Hellman’s algorithm

are then given by

Memory = LM and Time = Lk where MkL ' N and Mk2 = N .

The trade-off between the time and memory complexities is then described by the curve

Time×Memory2 = N2 .

Indeed, we have

Time×Memory2 = L3M2k =
N3M2k

M3k3
= N2 × N

Mk2
= N2 .

An interesting choice for parameters M , k and L satisfying this condition is

M = k = L = N1/3 ,

which leads to the following overall complexity

Memory = LM = N2/3 and Time = Lk = N2/3 .

The precomputation time equals LMk = N , which corresponds to the time complexity of the
exhaustive search.

When the function that we need to invert is a function from E to F , then a similar
algorithm applies, but F needs to be adapted so that it can be iterated several times. For
instance, if |E| < |F|, then F is composed with a simple “reduction” function whose role is to
truncate F (x). Similarly, when |E| > |F|, several copies of F (x) can be concatenated to reach
the required size. Several improvements of this algorithm have been proposed, based on the
notion of distinguished points or of rainbow tables.

TMTO algorithms can be used for instance for recovering the secret key K of a block
cipher from the knowledge of the ciphertext corresponding to a fixed known plaintext, typically
c = EK(0). This kind of method was used for storing the users’ passwords on Unix-like systems
in a secure way: the password serves as a secret key, and the value EK(0) is stored on the
server. When the user wants to log in to the system, EK(0) is computed fromK and compared
to the stored value. Obviously, the security of this technique relies on the fact that recovering
K from EK(0) is difficult when the block cipher resists known-plaintext attacks. However,
when the underlying block cipher is the former standard DES, the key-size is 56 bits only.
Then, an attack using the previous TMTO algorithm has memory and time complexities equal
to 237 which is feasible. It requires a massive precomputation, but this may be accomplished
by some collaborative effort. For this reason, storing passwords with this method would not be
secure. Another drawback is that using twice the same password (typically on two different
servers) would be trivially detected with this method. Instead, some public random data
named salt is introduced in the computation in order to avoid this type of attacks [MT79].
See e.g. Section 10.2 in [MvOV97] for more details on UNIX passwords.
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Case of stream ciphers. The previously discussed algorithm may be adapted to the “one-
out-of-many” context, i.e., several challenges y are given to the attacker, but she only needs to
find a preimage for a single value of y. The number of simultaneous challenges is then another
parameter which usually allows a better trade-off. This situation occurs in state-recovery
attacks against some stream ciphers, as pointed out by Babbage and Golic [Bab95, Gol97].
This attack applies when both the transition function and the filtering function of the generator
are publicly known, i.e., when they do not dependent on the secret key. The objective is
then to recover the initial state of the generator. This can be done by inverting the one-
way function F which associates to the n-bit initial state the first n bits of the keystream.
But if more than n consecutive keystream bits are known, the attacker can consider several
frames of n consecutive bits together, corresponding to several challenges. More precisely, D
consecutive keystream bits s0s1 . . . sD−1 provide (D − n+ 1) challenges yt = st . . . st+n−1. A
preimage of any yt then corresponds to the internal state of the generator at time t. Since
the first D bits of the keystream are known, recovering a whole internal state of the generator
then enables the attacker to compute all bits generated from the corresponding internal state.
Moreover, in most generators, the public transition function can be inverted for computing
the initial state. The corresponding algorithm is then named Time/Memory/Data trade-off.
The simplest version is described by Algorithm 4.

Algorithm 4 Basic time/memory/data trade-off algorithm against stream ciphers [Bab95,
Gol97].
Input: s0, . . . , sD+L−1, (D + L) consecutive keystream bits
/* Precomputation phase */
Randomly choose M elements x1, . . . , xM in Fn2 .
for i from 1 to M do
zi ← F (xi).
Store (xi, zi) in a table T , sorted by the zi

end for

/* On-line phase */
for t from 1 to D do
yt ← st . . . st+n−1

Search in the table whether there exists some i such that zi = yt
if (xi, yt) is in the table then
xi is the internal state of the generator at time t

end if
end for

From the birthday paradox, we know that if the size of the precomputed table and the
number of challenges satisfy

MD = N

where N = 2n is the number of possible internal states, then a collision between the two sets
{zi, 1 ≤ i ≤ M} and {yt, 1 ≤ t ≤ D} is likely to occur. For instance, for M = D = 2n/2,
the probability of a collision is 1− e−1 ' 0.63 [NS90, Page 18]. This coverage condition then
enables us to express the memory and time complexities of the two phases as a function of D
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and n:
Memory = M, Time = D and Precomputation = M =

2n

D
.

This leads to the following relation between memory and time complexities:

Memory × Time = N .

A particularly interesting point on this curve is given by M = D = 2n/2. It corresponds to an
algorithm with complexity

Memory = Time = Data = Precomputation = 2
n
2 .

A major consequence of this trade-off is that there exists a generic attack against any pseudo-
random generator whose filtering and transition functions do not dependent on the key, which
recovers the n-bit internal state of the generator with overall complexity 2n/2. Since such a
generator should resist any attack having complexity less than an exhaustive search for the
secret key, we deduce that the internal state of any such generator must be at least twice longer
than the secret key.

Biryukov-Shamir’s improvement. As pointed out by Biryukov and Shamir [BS00], the
previous attack can even be further improved by adapting the original Hellman’s attack to the
case where the attacker has to solve one out of many challenges. This leads to Algorithm 5.

The complexity analysis of Hellman’s attack similarly applies to the case withD challenges.
As shown before, we need to choose

Mk2 = N

and each table then covers roughly Mk states. The number of tables L must then be chosen
so that the union of all tables contains at least one of the D challenges, i.e,

LMk =
N

D
.

The complexities of Algorithm 5 are now

Memory = LM, Time = LkD and Precomputation = LkM =
N

D

leading to the following trade-off

Time×Memory2 × Data2 = N2 .

Indeed,

Time×Memory2 × Data2 =
N3D2

Mk2D2
= N2 .

This offers more trade-offs than the previous attacks, for instance we can take into account
the fact that practical attacks usually need to have data complexity smaller than the time
complexity. This constraint can now be achieved by choosing for instance Time = Memory =
2n/2, leading to Data = 2n/4 and Precomputation = 23n/4. This trade-off could not be achieved
with Algorithm 4 since Time = Memory = 2n/2 can only be obtained when Data = 2n/2.



Error-Correcting Codes and Symmetric Cryptography - A. Canteaut 35

Algorithm 5 Improved Time/Memory/Data trade-off algorithm against stream ci-
phers [BS00].
Input: s0, . . . , sD+L−1, (D + L) consecutive keystream bits
/* Precomputation phase */
for ` from 1 to L do
Randomly choose M elements x1, . . . , xM in E
for i from 1 to M do
zi ← (h` ◦ F )k(xi).
Store (xi, zi) in a table T`, sorted by the zi

end for
end for

/* On-line phase */
for t from 1 to D do
y ← st . . . st+n−1

for ` from 1 to L do
for j from 0 to (k − 1) do
yj ← (h` ◦ F )j(h`(y))
Search in Table T` whether there exists some i such that zi = yj
if (xi, yj) is in the table then
if (h` ◦ F )k−j(xi) = h`(y) then

(h` ◦ F )k−j−1(xi) is the internal state of the generator at time t
end if

end if
end for

end for
end for
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11.3.3 Statistical tests

Since a stream cipher shall resist distinguishing attacks, the underlying pseudo-random gener-
ator shall have good statistical properties. In particular, several classical statistical tests have
been defined which need to be satisfied by any pseudo-random generator. Passing all these
statistical tests is then a necessary security condition, but it is obviously not sufficient.

The first statistical properties required for a pseudo-random generator have been defined by
Knuth [Knu69] and Golomb [Gol82]. Since these works, enhanced families of tests have been
proposed. Usually, they include some normality tests, which determine the probability that
some property of the considered sequence is satisfied by a random sequence, and compression
tests which evaluate whether the considered sequence can be significantly compressed.

Normality tests. These tests are statistical hypothesis tests. The aim is to tell apart two
hypotheses: the null hypothesis H0, which corresponds to the truly random case, and the
alternative hypothesis H1:

• H0: s is a random sequence;

• H1: s has been produced by the target pseudo-random generator.

Some errors may occur when deciding between these two hypotheses. We distinguish the
following two types of errors, usually referred to as false alarms and non-detection.

conclusion
true situation accept H0 accept H1

random no error type-I error
(false alarm)

produced by the generator type-II error no error
(non-detection)

In normality tests, we usually consider some property satisfied by the known sequence, and we
evaluate the probability that the same property is satisfied by a random sequence. We then
decide between the two hypotheses by choosing a relevant value for the false alarm probability,
typically between 10−2 and 10−3.

The simplest normality test is the frequency test. For a binary sequence (st)0≤t<N of
length n, with n0 zeroes and n1 ones, we consider the following quantity

x =
(n0 − n1)√

N
.

This quantity corresponds, up to a factor
√
N , to the correlation

N−1∑
t=0

(−1)st .

When s is a random sequence, each (−1)st is a random variable uniformly distributed in
{−1, 1}. Then, from the central limit theorem, we deduce that, as N gets larger, the distri-
bution of x approximates the normal distribution with mean 0 and variance 1, i.e.,

Pr[a ≤ x ≤ b] ' 1√
2π

∫ b

a
e−

u2

2 du .
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We then choose some decision threshold T and select Hypothesis H1 if and only if |x| > T .
The corresponding false alarm probability is then given by

α = 2Pr[x > T ] = 2× 1√
2π

∫ ∞
T

e−
u2

2 du = erfc

(
T√
2

)
where erfc is the complementary error function:

erfc(x) =
2√
π

∫ ∞
x

e−u
2
du .

For instance, a binary sequence of length N = 100 with 58 ones will be accepted as random
since a random sequence satisfies |x| ≥ 1.6 with probability erfc(1.6/

√
2) = 0.109.

Similarly, we can test some other properties, including

• the frequency of the values within m-bit blocs;

• the number of runs;

• the longest run of ones within m-bit blocks...

Compression tests. These statistical tests determine whether a given sequence can be
significantly compressed, since a significant compression is not feasible for a truly random
sequence. The most prominent compression tests include Maurer universal statistical test,
Lempel-Ziv test, the linear complexity test...

Batteries of statistical tests. The most prominent statistical test suite is the NIST test
suite, detailed in the NIST special publication [Nat10]. A very complete description of all
involved tests and an implementation is available on http://csrc.nist.gov/groups/ST/
toolkit/rng/stats_tests.html.

Some other batteries of tests can be found, for instance the DIEHARD test suite designed
by George Marsaglia: http://stat.fsu.edu/pub/diehard/.

11.4 The main families of stream ciphers

Pseudo-random generators can be split into several families, depending on their application
targets, especially on the resources required for their implementation.

11.4.1 Information-theoretically generators

The aim of these generators is to achieve the same security as the one-time-pad under the
hypothesis that the adversary with unlimited computational power has some additional con-
straints, for instance her storage capacity is limited, or she has a limited network access [Mau92,
AR99, Rab05]. All known proposals in this category require a very heavy infrastructure and
can only be deployed on a large scale. For instance, they may need a shared source of random-
ness broadcasted by some satellites, or through the Internet on a huge number of web pages.
For this reason, their practical use can be envisaged in the very long term only. But these are
the only family of generators which achieve probable security.
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11.4.2 Generators based on a difficult mathematical problem

The security of these generators relies on the hardness of some well-known mathematical prob-
lems. In other words, it can be proved that distinguishing the generated sequence for a random
sequence with a significant advantage implies the existence of an algorithm for solving some
difficult problem. But, exactly as most public-key cryptosystems, these generators are mainly
based on some problems coming from number theory. An example is the RSA generator,
whose transition function is the RSA encryption function:

xt+1 = xet mod pq .

The output of the generator at time t is then the lowest-significant bit of xt [ACGS88]. Another
example is the Blum-Blum-Shub generator [BBS86] whose transition function corresponds to
squaring modulo pq. The security of this generator then relies of the hardness of the quadratic
residuosity problem. Because they all involve some computations with large numbers, all these
generators are extremely slow. They have a limited throughput and their implementation cost
is too high for being used in practical stream ciphers.

11.4.3 Generators based on block ciphers

These generators produce a pseudo-random sequence with a block cipher (e.g., the AES) used
with some particular mode of operation. The most prominent mode of operation which builds
a pseudo-random generator from a block cipher is the counter mode (CTR).

The CTR mode, standardized by the NIST in 2001 [Nat01], is depicted on Figure 11.6.
The internal state of the generator corresponds to an n-bit counter where n is the block size of
the underlying block cipher. The filtering function depends on the secret key and corresponds
to the encryption function of the block cipher under key K. The transition function Φ is
an incrementing function, which does not depend on the key, and which guarantees that,
for any initial state x0, all successive internal states are distinct. This transition function
is not explicitly defined in the NIST recommendation. The user is free to choose it. The
only condition is that all elements in the sequences of counters must be distinct. The most
widely used transition function is the incrementing function over integers modulo 2n. An
alternative, which usually has a lower hardware implementation cost (since it does not require
any carry), consists in choosing for Φ the transition function of an LFSR with primitive
feedback polynomial. In this second case, the sequence of all internal states has period (2n−1)
provided that the initial state differs from the all-zero word. For any of these transition
functions, when the underlying block cipher is ideal, the produced sequence is indistinguishable
from a random sequence if and only if fewer than 2n/2 keystream blocks are known [BDJR97]
(see also [Rog11, Chapter 5]). Indeed, a keystream sequence of more than 2n/2 blocks can
be easily distinguished from a random sequence since all constituent blocks are distinct: they
correspond to the images of distinct internal states by a permutation. A truly random sequence
composed of more than 2n/2 n-bit blocks is expected to contain a collision.

The initial states shall be chosen so that all values of the internal state for a given key are
distinct. In particular, if the adversary can control the initial state by choosing an appropriate
IV, the CTR mode is vulnerable to IV-chosen attacks. This is the case if the initial state is
derived from the IV by an initialization function which is independent from the secret key.
Indeed, the adversary can choose two IVs leading to two initial states x0 and x′0 with x′0 = x0+1
for instance.
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IV

s0 . . . sn−1 sn . . . s2n−1 s3n . . . s4n−1

. . .

s2n . . . s3n−1

Figure 11.6: Counter mode of operation (CTR).

In such a context, where the adversary can control the IV, the initialization function must
be designed in a way such that it is not possible to find a collision between keystream blocks
unless around 2

n
2 keystream blocks are considered. This situation occurs for the modified CTR

mode proposed by the 3GPP project (3rd Generation PartnerShip Project) in the specifications
of the Milenage algorithm, which ensures authentication and key distribution in UMTS [3rd01,
Gil03]. This mode is depicted on Figure 11.7, and a more general version is described and
studied in [Gil03].

IV

K E

K E

K K K

c = 0 c = 1 c = 2 c = 3

E E E

s0 . . . sn−1 sn . . . s2n−1 s3n . . . s4n−1

. . .

s2n . . . s3n−1

Figure 11.7: Modified Counter mode of operation.
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11.4.4 Dedicated generators

These generators are ad-hoc designs and do not rely on any other cryptographic primitive.
This family includes all generators with better performance than classical block ciphers. The
speed in a software environment, like on a usual PC, of a block cipher such as the AES is around
20 cycles for encrypting one byte, while some dedicated stream ciphers are able to achieve
between 3 and 5 cycles per encrypted byte (see [eba]). Similarly, only dedicated generators can
have a low-cost hardware implementation with a very limited power consumption. This type
of generators is then preferably used in some applications like embedded systems. However,
since several devastating attacks have been published on stream ciphers much after the main
results on block ciphers, the standardization process for stream ciphers is more recent. MUGI,
SNOW 2.0, Rabbit, decimv2 and KCipher-2 have been proposed in the last version of the
ISO/IEC 18033-4 standard (December 2011). Also, the eSTREAM project [ECR05], initiated
by the European Network of Excellence ECRYPT, was an international competition on stream
ciphers. It has received more than 30 new stream ciphers in 2005. Among them, 7 ciphers
have been included in a portfolio of recommended stream ciphers: HC-128, Rabbit, Salsa20/12
and Sosemanuk for software profile, and Grain v1, MICKEY 2.0 and Trivium for hardware
profilec.

Table-driven generators and RC4. As previously mentioned, dedicated generators mainly
rely on two design strategies. The next chapter will focus on the generators with a small inter-
nal size, which are appropriate for hardware implementations in constrained environments. An
alternative strategy consists in choosing a relatively large internal state, and a random-looking
transition function. This strategy has been mainly implemented by table-driven generators.
The first and most famous one is RC4 [Riv92]. It has been design in 1987 for RSA Data
Security. RC4 is not public and its specifications of RC4 are a trade secret. However, there
exists a public and free stream cipher named Alleged RC4 (aka ARC4). RC4 and ARC4 ac-
tually correspond to the same algorithm but the name ARC4 is sometimes preferred to avoid
trademark problems.

Even if it is now known to be weak, RC4 has been widely deployed because of its simplicity
and its high throughput. For instance, it is one of the possible ciphers in the SSL/TLS protocol
(to guarantee confidentiality of web transactions), and also in WEP (former security protocol
for IEEE 802.11 wireless networks, superseded by WPA and WPA2). The keysize in RC4 is
variable, between 40 and 1024 bits. The cipher does not accommodate any IV. The internal
state is an array of 2n words of n bits. In most cases, n = 8 is chosen, i.e., the internal state
is an array of 256 bytes. At each clock, this array defines a permutation of n-bit words.

Description. RC4 is composed of an initialization function, which computes the initial state
of the array from the secret key. Then, at each clock, the array is modified by permuting two
elements, and an n-bit keystream word is produced, which is defined by some element in the
array.

Several statistical biases have been detected in the sequence produced by RC4. These
biases mainly originate from weaknesses in the initialization phase (see e.g. [MS01, PM09]).
A systematic analysis of statistical biases in RC4 has been conducted in [ABP+13] and leads
to an attack against the TLS/SSL protocol with RC4.

cAn 8th cipher, named F-FCSR, was included in the original eSTREAM portfolio but has been removed
from the list after some cryptanalytic work.
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Algorithm 6 RC4 (All additions in this algorithm are modulo 2n).
Input. K, composed of k n-bit words, K[0], . . . ,K[k − 1].
/* Initialization */
for i from 0 to 2n − 1 do
S[i]← i

end for
j ← 0
for i from 0 to 2n − 1 do
j ← j + S[j] +K[i mod k]
swap values S[i] and S[j]

end for

/* Keystream generation */
i← 0, j ← 0
repeat
i← i+ 1
j ← j + S[i]
swap values S[i] and S[j].
return S[S[i] + S[j]]

until enough keystream words have been generated

It is worth noticing that the attack against WEP IEEE 802.11 by Fluhrer, Mantin and
Shamir [FMS01] comes from the weak resynchronization mechanism used in the protocol due
to the absence of IV.
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Chapter 12

LFSR-based Stream Ciphers

In order to minimize the size of the internal state, stream ciphers dedicated to low-cost hard-
ware implementations may use a linear transition function. Among all such possibilities,
linear feedback shift registers (LFSRs) offer several advantages including their performance,
their implementation cost and many theoretical results on the statistical properties of the
produced sequences. LFSR-based generators are then probably the most commonly studied
class of keystream generators. This class includes both hardware-oriented stream ciphers and
software-oriented ciphers, but this second type of applications usually relies on non-binary LF-
SRs, operating on a larger alphabet (e.g. on 32-bit words). The most widely used LFSR-based
stream ciphers include E0 (used in the Bluetooth standard), A5/1 used for encrypting the over-
the-air communications in the GSM cellular telephone standard, SNOW 2.0 (ISO/IEC 18033-4
standard) and its variant SNOW 3G used in UMTS 3G networks.

In most practical LFSR-based generators used nowadays, the internal state is divided into
two parts: one is updated linearly by an LFSR, and the other one is updated with a nonlinear
function in order to prevent the main attacks exploiting the linearity of the transition function.
This nonlinear part may be small (and seen as a nonlinear memory) as in E0 or SNOW 2.0,
or both parts of the internal state may be of equal size, like in MUGI or Grain.

12.1 Main properties of LFSRs

12.1.1 Definitions

An LFSR of length L over Fq is a finite state automaton which produces a semi-infinite
sequence of elements of Fq, s = (st)t≥0, satisfying a linear recurrence relation of degree L over
Fq

st+L =

L∑
i=1

cist+L−i, ∀t ≥ 0 .

The L coefficients c1, . . . , cL are elements of Fq. They are called the feedback coefficients of
the LFSR.

The Fibonacci representation of an LFSR of length L over Fq has the form depicted on
Figure 12.1. The register consists of L delay cells, called stages, each containing an element
of Fq. The contents of the L stages, st, . . . , st+L−1, form the state of the LFSR. The L stages
are initially loaded with L elements, s0, . . . , sL−1, which can be arbitrary chosen in Fq; they
form the initial state of the register.

45
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Figure 12.1: Fibonacci representation of an LFSR of length L.

The shift register is controlled by an external clock. At each time unit, each digit is shifted
one stage to the right. The content of the rightmost stage st is output. The new content of
the leftmost stage is the feedback bit, st+L. It is obtained by a linear combination of the
contents of the register stages, where the coefficients of the linear combination are given by
the feedback coefficients of the LFSR:

st+L =

L∑
i=1

cist+L−i .

Therefore, the LFSR implements the linear recurrence relation of degree L:

st+L =
L∑
i=1

cist+L−i, ∀t ≥ 0 .

Example 12.1. A binary LFSR of length 4. Table 12.1 gives the successive states of the
binary LFSR of length 4 with feedback coefficients c1 = c2 = 0, c3 = c4 = 1 and with initial
state (s0, s1, s2, s3) = (1, 0, 1, 1). This LFSR is depicted in Figure 12.2. It corresponds to the
linear recurrence relation

st+4 = st+1 + st mod 2 .

The output sequence s0s1 . . . generated by this LFSR is 1011100 . . ..

Figure 12.2: Binary LFSR with feedback coefficients (c1, c2, c3, c4) = (0, 0, 1, 1)

i+
- - - -

?
�

-

Feedback polynomial and characteristic polynomial. The output sequence of an LFSR
is uniquely determined by its feedback coefficients and its initial state. The feedback coef-
ficients c1, . . . , cL of an LFSR of length L are usually represented by the LFSR feedback
polynomial (or connection polynomial) defined by

P (X) = 1−
L∑
i=1

ciX
i .



Error-Correcting Codes and Symmetric Cryptography - A. Canteaut 47

Table 12.1: Successive states of the LFSR with feedback coefficients (c1, c2, c3, c4) = (0, 0, 1, 1)
and with initial state (s0, s1, s2, s3) = (1, 0, 1, 1)

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
st 1 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1
st+1 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0
st+2 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1
st+3 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 1

Alternatively, one can use the characteristic polynomial, which is the reciprocal polynomial of
the feedback polynomial:

P ?(X) = XLP (1/X) = XL −
L∑
i=1

ciX
L−i .

For instance, the feedback polynomial of the binary LFSR shown in Figure 12.2 is P (X) =
1 +X3 +X4 and its characteristic polynomial is P ?(X) = 1 +X +X4.

Non-singular LFSRs. An LFSR is said to be non-singular if the degree of its feedback
polynomial is equal to the LFSR length (i.e., if the feedback coefficient cL differs from 0).
In this case, the transition function of the LFSR is bijective. Any sequence generated by a
non-singular LFSR of length L is periodic, and its period does not exceed qL− 1. Indeed, the
LFSR has at most qL different states and the all-zero state is always followed by the all-zero
state. Moreover, if the LFSR is singular, all generated sequences are ultimately periodic, i.e.,
the sequences obtained by ignoring a certain number of elements at the beginning are periodic.

12.1.2 Characterization of LFSR output sequences

A given LFSR of length L over Fq can generate qL different sequences corresponding to
the qL different initial states and these sequences form a vector space over Fq. The set of all
sequences generated by an LFSR with feedback polynomial P is characterized by the following
property [Zie59].

Theorem 12.1. A sequence (st)t≥0 is generated by an LFSR of length L over Fq with feedback
polynomial P if and only if there exists a polynomial Q ∈ Fq[X] with deg(Q) < L such that
the generating function of (st)t≥0 satisfies∑

t≥0

stX
t =

Q(X)

P (X)
.

Moreover, the polynomial Q is completely determined by the coefficients of P and by the initial
state of the LFSR:

Q(X) = −
L−1∑
j=0

Xj

(
k∑
k=0

skcj−k

)
,

where P (X) = −
∑L

i=0 ciX
i.
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Proof.(
−

L∑
i=0

ciX
i

)( ∞∑
t=0

stX
t

)
=

∞∑
j=0

Xj

− j∑
k=max(0,j−L)

skcj−k


= −

L−1∑
j=0

Xj

(
j∑

k=0

skcj−k

)
+

∞∑
j=L

Xj

 j∑
k=j−L

skcj−k

 .

Therefore, we deduce that

Q(X) = −

(
L∑
i=0

ciX
i

)( ∞∑
t=0

stX
t

)

is a polynomial of degree strictly less than L if and only if the second right-hand term vanishes,
i.e.,

j∑
k=j−L

skcj−k = 0

for all j ≥ L. �

This result, which is called the fundamental identity of formal power series of linear re-
curring sequences, means that there is a one-to-one correspondence between the sequences
generated by an LFSR of length L with feedback polynomial P and the fractions Q(X)/P (X)
with deg(Q) < L. It has two major consequences. On the first hand, any sequence generated
by an LFSR with feedback polynomial P is also generated by any LFSR whose feedback poly-
nomial is a multiple of P . This property is widely used for attacking LFSR-based generators
(e.g., in distinguishing attacks, and in fast correlation attacks). It may also be helpful since
some multiple of the feedback polynomial may provide more appropriate representations in
some contexts.

Example 12.2. Let s be a binary sequence satisfying

st+6 = st+4 + st+3 + st+1 + st, ∀t ≥ 6 .

The corresponding feedback polynomial is then P (X) = 1 + X2 + X3 + X5 + X6. It then
follows that s also satisfies

st+8 = st+7 + st

since 1 +X +X8 = (1 +X2 +X3 +X5 +X6)(1 +X +X2). This alternative recursion may
then have a lower implementation cost because of its sparsity.

On the other hand, Theorem 12.1 implies that a sequence generated by an LFSR with
feedback polynomial P is also generated by a shorter LFSR with feedback polynomial P ′

if the corresponding fraction Q(X)/P (X) is such that gcd(P,Q) 6= 1. Thus, amongst all
sequences generated by the LFSR with feedback polynomial P , there is one which can be
generated by a shorter LFSR if and only if P is not irreducible over Fq. This leads to the
following natural notion of minimal polynomial.
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Definition 12.2. For any linear recurring sequence (st)t≥0, there exists a unique polynomial
P0 with constant term equal to 1, such that the generating function of (st)t≥0 is given by∑

t≥0

stX
t = Q0(X)/P0(X)

where P0 and Q0 are relatively prime.
Then, the shortest LFSR which generates (st)t≥0 has length L = max(deg(P0), deg(Q0) +

1), and its feedback polynomial is equal to P0. The reciprocal polynomial of P0, XLP0(1/X),
is the characteristic polynomial of the shortest LFSR which generates (st)t≥0; it is called the
minimal polynomial of the sequence.

The minimal polynomial of a linear recurring sequence then determines the linear recur-
rence relation of least degree satisfied by the sequence.

Example 12.3. The binary LFSR of length 10 depicted in Figure 12.3 has feedback polyno-
mial

P (X) = 1 +X +X3 +X4 +X7 +X10 ,

and its initial state s0 . . . s9 is 1001001001.

Figure 12.3: Example of a LFSR of length 10.
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The generating function of the sequence produced by this LFSR is given by

∑
t≥0

stX
t =

Q(X)

P (X)

where Q is deduced from the coefficients of P and from the initial state:

Q(X) = 1 +X +X7 .

Therefore, we have

∑
t≥0

stX
t =

1 +X +X7

1 +X +X3 +X4 +X7 +X10
=

1

1 +X3
,

since 1 + X + X3 + X4 + X7 + X10 = (1 + X + X7)(1 + X3) in F2[X]. This implies that
(st)t≥0 is also generated by the LFSR with feedback polynomial P0(X) = 1 +X3 depicted in
Figure 12.4. The minimal polynomial of the sequence is then 1 +X3.

Obviously, in all cryptographic applications, the feedback polynomials of LFSRs are always
chosen irreducible.
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Figure 12.4: LFSR of length 3 which generates the same sequence as the LFSR in Figure 12.3

0 - 0 - 1 --

12.1.3 Period of a linear recurring sequence

Another important role played by the minimal polynomial is that it determines the period of
a linear recurring sequence.

Proposition 12.3. The least period of a linear recurring sequence is equal to the order of its
minimal polynomial P0, i.e., to the least positive integer e for which P0(X) divides Xe + 1.

For instance, the sequence studied in Example 12.3 has minimal polynomial X3 +1. Then,
it has period 3. On the other hand, any non-zero sequence generated by the LFSR of length 4
depicted in Figure 12.2 has period 24 − 1 = 15. Indeed, the minimal polynomial of any such
sequence corresponds to its characteristic polynomial P0(X) = 1 + X + X4, because P0 is
irreducible.

We directly deduce from Proposition 12.3 that a sequence has maximal period 2degP0 − 1
if and only if P0 is a primitive polynomial. The sequences produced by an LFSR with primitive
feedback polynomial are called maximal-length sequences (m-sequences).

12.1.4 Statistical properties of m-sequences

Maximum-length sequences, i.e., the linear recurring sequences produced by an LFSR with
primitive feedback polynomial, possess several good statistical properties which make them
appropriate building-blocks in keystream generators.

For instance, any binary sequence produced by an LFSR of length L with primitive feed-
back polynomial satisfy the following properties. The first three properties are called Golomb’s
randomness postulates [Gol82].

• Balance property: The difference between the number of ones and the number of zeroes
in any window of 2L − 1 consecutive bits is equal to 1:

#{i, st0+i = 1, 0 ≤ i < 2L − 1} −#{i, st0+i = 0, 0 ≤ i < 2L − 1} = 1 .

• Runs: a run is a set of consecutive zeroes flanked by ones, or of consecutive ones flanked
by zeroes. For instance, the sequence 0100011 has a run of zeroes of length 3. The
proportion of runs of length i within any frame of (2L − 1) consecutive bits of an m-
sequence is 2−i, 0 ≤ i < L. Moreover, among all runs of length i, i ≤ L− 2, the number
of runs of zeroes and the number of runs of ones are equal. There is exactly one run of
length (L− 1) and one run of length L (see Example 12.4).

• Two-level auto-correlation: The autocorrelation of a binary sequence of period N is
defined by

C(τ) =

2L−2∑
t=0

(−1)
st+st+τ mod (2L−1) .
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C(τ) then measures the distance between the sequence s0s1 . . . s2L−2 and the sequence
obtained by shifting it by τ positions, i.e., sτsτ+1 . . . sτ−1. Indeed, we have

C(τ) = 2L − 1− 2#{t, st 6= st+τ mod (2L−1), 0 ≤ t < 2L − 1} .

In particular, C(τ) = 2L − 1 if and only if τ is a multiple of the period of the sequence
since the two sequences are identical. For any m-sequence generated by an LFSR with
primitive feedback polynomial of degree L, we have that, if τ is not a multiple of (2L−1),
then C(τ) = −1. This means that the sequence is as far as possible from its shifted
versions. This property is widely used in telecommunications for synchronization.

• Multigram property: the L-tuple stst+1 . . . st+L−1 takes all the 2L − 1 nonzero values
when t varies between 0 and (2L − 2).

Some additional properties of m-sequences are detailed in [Hel11].

Example 12.4. Let us consider the first 31 bits of the binary sequence produced by the LFSR
of length 5 with primitive feedback polynomial X5 +X3 + 1 from initial state 10000:

1000010101110110001111100110100

It can be checked that this sequence consists of 16 ones and 15 zeroes. It then satisfies the
balance property.

The sequence has 16 runs: 8 runs of length 1 (4 runs of zeroes and 4 runs of ones), 4 runs
of length 2 (2 runs of zeroes and 2 runs of ones), 2 runs of length 3 (1 run of zeroes and 1 run
of ones), one run of zeroes of length 4 and one run of ones of length 5.

12.1.5 LFSR and multiplication in a finite field

The operation performed by a q-ary LFSR of length L with irreducible feedback polynomial
corresponds to a multiplication in the finite field FqL .

Proposition 12.4. Let P ? be an irreducible polynomial in Fq[X] with degree L. Let α ∈ FqL
be a root of P ? and {β0, . . . , βL−1} denote the dual basis of {1, α, . . . , αL−1}, i.e.,

Tr(αiβj) =

{
0 if i 6= i
1 if i = j

,

where Tr denotes the trace function from FqL into Fq.
Then, the content of the LFSR with characteristic polynomial P ? at time (t + 1) is equal

to its content at time t multiplied by α, where these vectors are identified with elements in the
field FqL decomposed on the basis {β0, . . . , βL−1}.

Proof. For any t, we identify an L-tuple (x0, . . . , xL−1) with an element in the finite field FqL
by

x = xL−1βn−1 + . . .+ x0β0 .

Then, by definition of the dual basis, we have that, for any 0 ≤ i < L,

Tr(αix) =

L−1∑
j=0

Tr(xjα
iβj)

=

L−1∑
j=0

xjTr(α
iβj) = xi .
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This means that the i-th coordinate of x in the basis {β0, . . . , βL−1} is equal to Tr(αix). Let
us now compute the coordinates of y = αx in this basis. The i-th coordinate of y is given by

Tr(αiy) = Tr(αi+1x) .

It follows that the i-th coordinate of y is equal to the (i+ 1)-th coordinate of x if i < L− 1.
For i = L− 1, the last coordinate of y is given by

Tr(αL−1y) = Tr(αLx)

= Tr

(
L∑
i=1

ciα
L−ix

)

=
L∑
i=1

ciTr(α
L−ix) =

L∑
i=1

cixL−i ,

where the characteristic polynomial is given by P ?(X) = XL −
∑L

i=1 ciX
L−i, implying that

αL =
∑L

i=1 ciα
L−i. It follows that the coordinates of y = αx correspond to the content after

one clock of the LFSR initialized by x. �

Galois representation. Since an LFSR with irreducible feedback polynomial is a device
which implements the multiplication by an element α in a finite field, some alternate auto-
morphism between the FqL and FLq may be used without modifying the transition function
over FqL . Another natural representation is obtained when the basis {1, α, α2, . . . , αL−1} is
used for representing the elements in FqL instead of the dual basis {β0, . . . , βL−1}. This repre-
sentation is called the Galois representation, and corresponds to the “natural” multiplication
circuit, i.e., the multiplication in the so-called polynomial basis. The Galois representation
corresponding to the Fibonacci LFSR depicted on Figure 12.1 is given in Figure 12.5.

Figure 12.5: Galois representation of the LFSR depicted on Figure 12.1.
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It is worth noticing that Fibonacci and Galois representations have different features. For
instance, the Galois representation is obviously more efficient in software than the Fibonacci
representation. Also, the diffusion within the register in the Galois representation is faster.

12.2 Linear complexity and LFSR synthesis

A fundamental quantity for a sequence is its linear complexity since it determines the smallest
linear recursion satisfied by the sequence, or equivalently the length of the smallest LFSR
generating the sequence.
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Definition 12.5. The linear complexity of a semi-infinite sequence s = (st)t≥0 of elements
of Fq, Λ(s), is the smallest integer Λ such that s can be generated by an LFSR of length Λ
over Fq, and is ∞ if no such LFSR exists. By way of convention, the linear complexity of the
all-zero sequence is equal to 0. The linear complexity of a linear recurring sequence corresponds
to the degree of its minimal polynomial.

The linear complexity Λ(sn) of a finite sequence sn = s0s1 . . . sn−1 of n elements of Fq is
the length of the shortest LFSR which produces sn as its first n output terms for some initial
state.

The linear complexity of an infinite linear recurring sequence s and the linear complexity of
the finite sequence sn composed of the first n digits of s are related by the following property:
if s is an infinite linear recurring sequence with linear complexity Λ, then the finite sequence
sn has linear complexity Λ for any n ≥ 2Λ [Mas69]. Moreover, the unique LFSR of length Λ
that generates s is the unique LFSR of length Λ that generates sn for every n ≥ 2Λ.

12.2.1 Linear complexity as a statistical test

For a sequence s = s0s1 . . ., the sequence of the linear complexities (Λ(sn))n≥1 of all sub-
sequences sn = s0 . . . sn−1 composed of the first n terms of s is called the linear complexity
profile of s.

Proposition 12.6. [Rue86, Page 40] The expected linear complexity of a binary sequence
sn = s0 . . . sn−1 of n independent and uniformly distributed binary random variables is

E[Λ(sn)] =
n

2
+

4 + ε(n)

18
+ 2−n

(
n

3
+

2

9

)
,

where ε(n) = n mod 2.

Therefore, it may be possible to distinguish a sequence from a truly random sequence by
computing its linear complexity profile and comparing the result to what is expected from
Proposition 12.6. Further results on the linear complexity and on the linear complexity profile
of random sequences can be found in [Rue86].

12.2.2 Berlekamp-Massey algorithm

The Berlekamp-Massey algorithm is an algorithm for determining the linear complexity of a
finite sequence and the feedback polynomial of an LFSR of minimal length which generates this
sequence. This algorithm is due to Massey [Mas69], who showed that the iterative algorithm
proposed in 1967 by Berlekamp [Ber68] for decoding BCH codes can be used for finding the
shortest LFSR that generates a given sequence. Given sequence sn of length n, the Berlekamp-
Massey performs n iterations. The t-th iteration determines an LFSR of minimal length which
generates the first t digits of sn. The algorithm is described in Algorithm 7. In the particular
case of a binary sequence, the quantity d′ does not need to be stored since it is always equal
to 1. Moreover, the feedback polynomial is simply updated by

P (X)← P (X) + P ′(X)Xt−m .

The number of operations performed for computing the linear complexity of a sequence of
length n is O(n2). It can be proved that the Berlekamp-Massey algorithm and the Euclidean
algorithm are essentially the same [Dor87].
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Algorithm 7 The Berlekamp-Massey algorithm.
Input: sn = s0s1 . . . sn−1, a sequence of n elements of Fq.
Output: Λ, the linear complexity of sn and P , the feedback polynomial of an LFSR of
length Λ which generates sn.
/* Initialization */
P (X)← 1, P ′(X)← 1, Λ← 0, m← −1, d′ ← 1.
/* Algorithm */
for t from 0 to n− 1 do
d← st +

∑Λ
i=1 pist−i.

if d 6= 0 then
T (X)← P (X).
P (X)← P (X)− d(d′)−1P ′(X)Xt−m.
if 2Λ ≤ t then

Λ← t+ 1− Λ.
m← t.
P ′(X)← T (X).
d′ ← d.

end if
end if

end for
return Λ and P

The LFSR of minimal length that generates a sequence sn of length n is unique if and only
if n ≥ 2Λ(sn), where Λ(sn) is the linear complexity of sn.

Obviously, the linear complexity Λ(s) of a semi-infinite linear recurring sequence s =
(st)t≥0 is equal to the linear complexity of the finite sequence composed of the first n terms of
s for any n ≥ Λ(s). Thus, the Berlekamp-Massey algorithm determines the shortest LFSR that
generates an infinite linear recurring sequence s from the knowledge of any 2Λ(s) consecutive
digits of s.

Example 12.5. Table 12.2 describes the successive steps of the Berlekamp-Massey algorithm
applied to the binary sequence of length 7, s0 . . . s6 = 0111100. The values of Λ and P

t st d Λ P (X) m P ′(X)

0 1 −1 1

0 0 0 0 1 −1 1

1 1 1 2 1 +X2 1 1

2 1 1 2 1 +X +X2 1 1

3 1 1 2 1 +X 1 1

4 1 0 2 1 +X 1 1

5 0 1 4 1 +X +X4 5 1 +X

6 0 0 4 1 +X +X4 5 1 +X

Table 12.2: Successive steps of the Berlekamp-Massey algorithm applied to the binary sequence
of length 7, s0 . . . s6 = 0111100.
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obtained at the end of step t correspond to the linear complexity of the sequence s0 . . . st and
to the feedback polynomial of an LFSR of minimal length that generates it.

12.3 Classical constructions of LFSR-based generators

It is clear that an LFSR should never be used by itself as a keystream generator. If the feedback
coefficients are publicly known (which is usually the case when the LFSR is implemented in
hardware), the entire keystream can obviously be recovered from the knowledge of any Λ
consecutive bits of the keystream, where Λ is the linear complexity of the running-key (which
does not exceed the LFSR length). If the feedback coefficients are kept secret, the entire
keystream can be recovered from any 2Λ consecutive bits of the keystream by the Berlekamp-
Massey algorithm.

However, LFSRs are extremely fast and low-cost devices and they generate sequences with
good statistical properties, in particular with a high period. Therefore, they are often used as
building-blocks in dedicated keystream generators, but within a more complex system. In par-
ticular, three classical constructions based on LFSR aim at increasing the linear complexity of
the generated sequence at a low implementation cost. These three methods have received a lot
of attention and have been widely used within stream ciphers. They include the combination
generator, the filter generator and the generators based on LFSR with irregular clocking.

12.3.1 Combination generators

A combination generator is a keystream generator composed of several LFSRs whose outputs
are combined by a Boolean function to produce the keystream. Then, the output sequence
(st)t≥0 of a combination generator composed of n LFSRs is given by

st = f(u1
t , u

2
t , . . . , u

n
t ), ∀t ≥ 0 ,

where (uit)t≥0 denotes the sequence generated by the i-th constituent LFSR and f is a function
of n variables. In the case of a combination generator composed of n LFSR over Fq, the
combining function is a function from Fnq into Fq.
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Figure 12.6: Combination generator.

The combining function f should obviously be balanced, i.e., its output should be uniformly
distributed. The constituent LFSRs should be chosen to have primitive feedback polynomials
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for ensuring good statistical properties of their output sequences. The characteristics of the
constituent LFSRs and the combining function are usually publicly known. The secret param-
eters are the initial states of the LFSRs, which are derived from the secret key of the cipher
by a key-loading algorithm. When the feedback polynomials of the LFSR and the combining
function are not known, the reconstruction attack presented in [CF01] enables to recover the
complete description of the generator from the knowledge of a large segment of the ciphertext
sequence.

Example 12.6. Geffe generator [Gef73] The generator proposed by Geffe [Gef73] is com-
posed of three LFSRs of distinct lengths combined by the function

f(x1, x2, x3) = x1x2 + x2x3 + x3 .

It is worth noticing that this function corresponds to an IF: if x2 = 0, then f(x1, x2, x3) = x3

and if x2 = 1, f(x1, x2, x3) = x1.
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Figure 12.7: Geffe generator.

Linear complexity of the output sequence. The sequence produced by a combination
generator is a linear recurring sequence. Its period and its linear complexity can be derived
from those of the sequences generated by the constituent LFSRs and from the ANF of the
combining function. Indeed, if we consider two linear recurring sequences u and v over Fq
with linear complexities Λ(u) and Λ(v), we have the following properties:

• the linear complexity of the sequence u + v = (ut + vt)t≥0 satisfies

Λ(u + v) ≤ Λ(u) + Λ(v) ,

with equality if and only if the minimal polynomials of u and v are relatively prime.
Moreover, in case of equality, the period of u + v is the least common multiple of the
periods of u and v.

• the linear complexity of the sequence uv = (utvt)t≥0 satisfies

Λ(uv) ≤ Λ(u)Λ(v) ,

where equality holds if the minimal polynomials of u and v are primitive and if Λ(u) and
Λ(v) are distinct and greater than 2. Other general sufficient conditions for Λ(uv) =
Λ(u)Λ(v) can be found in [Her86, RS87, GN95].

These results lead to the following general proposition.
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Proposition 12.7. [RS87] Let us consider the combination generator composed of n binary
LFSRs with primitive feedback polynomials which are combined by a Boolean function f . If
all LFSR lengths L1, . . . , Ln are distinct and greater than 2 (and if the LFSR initializations
differ from the all-zero state), the linear complexity of the output sequence s is equal to

f(L1, L2, . . . , Ln)

where the algebraic normal form of f is evaluated over integers.

For instance, if four LFSRs of lengths L1, . . . , L4 satisfying the previous conditions are
combined by the Boolean function x1x2 + x2x3 + x4, the linear complexity of the resulting
sequence is L1L2 + L2L3 + L4. Similar results concerning the combination of LFSRs over Fq
can be found in [Bry86, GN95]. For instance, the linear complexity of the sequence produced
by the Geffe generator is L1L2 + L2L3 + L3 where L1, L2 and L3 denote the lengths of the
constituent LFSRs.

A high linear complexity is obviously desirable for a keystream sequence since it ensures
that Berlekamp-Massey algorithm becomes computationally infeasible. Thus, the combining
function f should have a high algebraic degree.

A detailed analysis of the security of the combination generator, especially its resistance
to correlation attacks, is provided in Section 12.5.

12.3.2 Filter generator

A filter generator is a keystream generator composed of a single LFSR whose content is filtered
by a nonlinear function. More precisely, the output sequence of a filter generator corresponds
to the output of a nonlinear function whose inputs are taken from some stages of the LFSR. If
(ut)t≥0 denotes the sequence generated by the LFSR, the output sequence (st)t≥0 of the filter
generator is given by

st = f(ut+γ1 , ut+γ2 , . . . , ut+γn), ∀t ≥ 0

where f is a function of n variables, n is less than or equal to the LFSR length and (γi)1≤i≤n
is a decreasing sequence of non-negative integers called the tapping sequence.
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Figure 12.8: Filter generator.
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In order to obtain a keystream sequence having good statistical properties, the filtering
function f should be balanced, and the feedback polynomial of the LFSR should be chosen to
be a primitive polynomial.

In a filter generator, the LFSR feedback polynomial, the filtering function and the tapping
sequence are usually publicly known. The secret parameter is the initial state of the LFSR
which is derived from the secret key of the cipher. The attack presented in [Sie85] enables
to construct an equivalent keystream generator from the knowledge of a large segment of the
ciphertext sequence when the LFSR feedback polynomial is the only known parameter (i.e.,
when the filtering function, the tapping sequence and the initial state are kept secret).

Any filter generator is equivalent to a particular combination generator, in the sense that
both generators produce the same output sequence: an equivalent combination generator
consists of n copies of the LFSR used in the filter generator with shifted initial states; the
combining function corresponds to the filtering function.

Linear complexity of the output sequence. The output sequence s of a filter generator
is a linear recurring sequence. Its linear complexity, Λ(s), is related to the LFSR length and to
the algebraic degree of the filtering function f . For a binary LFSR with a primitive feedback
polynomial, we have

Λ(s) ≤
d∑
i=0

(
L

i

)
where L denotes the LFSR length and d denotes the algebraic degree of f [Key76, Mas01].
The period of s divides 2L − 1. Moreover, if L is a large prime, Λ(s) is at least

(
L
d

)
for most

filtering functions with algebraic degree d [Rue86]. To achieve a high linear complexity, the
LFSR length L and the algebraic degree of the filtering function should be large enough. More
precisely, the keystream length available to an attacker should always be much smaller than(

L
deg(f)

)
.

It is worth noticing that the lower bound on the linear complexity does not hold for all
functions. For instance, some examples of filter generators with an LFSR of size L and a
filtering function of high degree, but with linear complexity L only can be exhibited [RC10].

12.3.3 LFSRs with irregular clocking

Another technique for increasing the linear complexity of the produced keystream consists
in considering one or several LFSRs, but some LFSR bits decide which LFSR to clock and
how often. The most prominent example is the shrinking generator proposed in 1993 by
Coppersmith, Krawczyk and Mansour [CKM94]. It is composed of two LFSRs, and the
output of the second LFSR controls the clock of the first one. More precisely, if the second
LFSR outputs 0, the output bit of the first one is discarded. This generator is depicted on
Figure 12.9. Then, it can be proved that the linear complexity of the produced sequence is at
least

LA2LB−2

where LA and LB denote the linear complexities of the two constituent registers. The self-
shrinking generator [MS95] and the alternating-step generator [Gün88] are two other examples
of clock-controlled generators.
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Figure 12.9: The shrinking generator.
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12.4 Some widely-used LFSR-based generators

12.4.1 A5/1

A5/1 is the stream cipher used for encrypting over-the-air transmissions in the GSM standard.
A5/1 is used in most European countries, whereas a weaker cipher, called A5/2, is used in
other countries (a description of A5/2 and an attack can be found in [PFS00]). The description
of A5/1 was first kept secret but its design has been reverse-engineered in 1999 by Briceno,
Golberg and Wagner [BGW99].

A5/1 has a 64-bit secret key. A GSM conversation is transmitted as a sequence of 228-bit
frames (114 bits in each direction) every 4.6 millisecond. Each frame is xored with a 228-bit
sequence produced by the A5/1 running-key generator. The initial state of this generator
depends on the 64-bit secret key, K, which is fixed during the conversation, and on a 22-bit
public frame number, F .

Description of the running-key generator. The A5/1 running-key generator is com-
posed of 3 LFSRs of lengths 19, 22 and 23. Their characteristic polynomials are X19 +X5 +
X2 +X+1, X22 +X+1 and X23 +X15 +X2 +X+1. The internal state of the generator then
consists of 64 bits only, which makes it vulnerable to Time-Memory-Data-Trade-off attacks.

For each frame transmission, the 3 LFSRs are first initialized to zero. Then, at time
t = 1, . . . , 64, the LFSRs are clocked, and the key bit Kt is xored to the feedback bit of each
LFSR. For t = 65, . . . , 86, the LFSRs are clocked in the same fashion, but the (t− 64)-th bit
of the frame number is now xored to the feedback bits. This initialization phase is depicted
on Figure 12.10.
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Figure 12.10: Initialization of the A5/1 running-key generator.

After these 86 cycles, the generator runs as depicted on Figure 12.11. Each LFSR has a
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clocking tap: tap 8 for the first LFSR, tap 10 for the second and the third ones (where the
feedback tap corresponds to tap 0). At each unit of time, the majority value b of the 3 clocking
bits is computed. A LFSR is clocked if and only if its clocking bit is equal to b. For instance, if
the 3 clocking bits are equal to (1, 0, 0), the majority value is 0. The second and third LFSRs
are clocked, but not the first one. The output of the generator is then given by the xor of
the outputs of the 3 LFSRs. After the 86 initialization cycles, 328 bits are generated with
the previously described irregular clocking. The first 100 ones are discarded and the following
228 bits form the running-key.
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Figure 12.11: A5/1 running-key generator.

Attacks on A5/1. Several time-memory trade-off attacks have been proposed on A5/1
exploiting the small size of the secret key or of the internal state [BD00, BSW00]. They
require the knowledge of a few seconds of conversation plaintext and run very fast. Even if they
need a huge precomputation time and memory, an optimized version has been implemented
in 2008: the group The Hacker’s Choice has precomputed the huge look-up tables involved in
the time-memory-trade-off attack. These tables have also been computed and then released
in December 2009 by the A5/1 cracking project [NP09], and an improved implementation has
been described in [KPPM12].

Another attack due to Ekdahl and Johansson [EJ03] exploits some weaknesses of the
key initialization procedure. It has been later improved by Maximov, Johansson and Bab-
bage [MJB04] and then by Barkan and Biham [BB06]. It requires a few minutes using 5-10
seconds of conversation plaintext without any notable precomputation and storage capacity.
Most of these attacks can also be turned into ciphertext-only attacks in the context of GSM
communications by exploiting the fact that error-correction is performed before encryption in
the GSM transmissions [BBK08].

12.4.2 E0

E0 is the stream cipher used for ensuring the confidentiality of communications in the Blue-
tooth protocol for wireless short-range connectivity [Blu].

The keysize in E0 is 128 bits. More precisely, the number of key bytes, between 1 and 16
is negotiated between the two modules in the protocol, but the key is always extended to a
128-bit word by adding some redundancy when the effective number of key bits is less than
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128. The IV has 64 bits which correspond to the 48-bit Bluetooth address, and a 26-bit master
counter.

In the Bluetooth protocol, data are transmitted as frames of at most 2745 bits. Each frame
is then encrypted by xoring the first output bits of the keystream generator. The generator
is initialized with a secret key, which remains the same during the whole session, and an IV
which is modified for each new frame.

Description of the running-key generator. E0 is a combination generator composed of
four LFSRs, combined by a Boolean function with a four-bit internal memory. This generator
can be seen as a variant of the summation generator [Rue86].

This generator is used at two different levels: it is first applied during the initialization
phase for generating a 128-bit initial state from the secret key and the IV. Then, the same
mechanism is used to produce the keystream from the initial state.

The four LFSRs are binary LFSRs of respective lengths L1 = 25, L2 = 31, L3 = 33,
L4 = 39 (i.e., a total of 128 bits) with feedback polynomials

P1(x) = x25 + x20 + x12 + x8 + 1

P2(x) = x31 + x24 + x16 + x12 + 1

P3(x) = x33 + x28 + x24 + x4 + 1

P4(x) = x39 + x36 + x28 + x4 + 1 .

Let xit denote the output at time t of the i-th LFSR. Then, the 3-bit integer (between 0 and
4) corresponding to the sum of the outputs of the four LFSRs is computed:

yt = x1
t + x2

t + x3
t + x4

t = 4y2
t + 2y1

t + y0
t

where y2
t , y

1
t , y

0
t are binary values. The generator also includes some internal memory composed

of two 2-bit words, denoted by ct and ct−1 at time t. If 2c1
t + c0

t = ct denotes the binary
decomposition of ct, then this 2-bit word is updated by

c1
t+1 = z1

t+1 + c1
t + c0

t−1 mod 2

c0
t+1 = z0

t+1 + c0
t + c1

t−1 + c0
t−1 mod 2

where z1
t , z

0
t is the binary decomposition of the integer

zt =
⌊yt−1 + ct−1

2

⌋
.

This combination generator with memory is directly used for producing the keystream: the
keystream at time t is equal to

st = y0
t + c0

t mod 2 .

The generator is initialized by the means of an additional level of the previously described
system. The four LFSRs are first initialized with the 128-bit value

G1(Kc) XOR G2(IV )

where G1 and G2 are two affine transformations with a 128-bit output. The two memory words
are set to zero. Then, the generator is clocked 200 times, and another affine transformation G3

is applied to the last 128 bits produced by the generator. The result of this operation then
is then used as an initial state for the second-level generator, i.e., for the generator which
outputs the keystream. The internal memory of this second-level generator is given by the
memory of the first-level generator after the first 200 clocks.



62 Chapter 12. LFSR-based Stream Ciphers

Figure 12.12: E0 keystream generator.

x1t

c0t−1

c0t

y0t

y2t

st

x2t

x3t

x4t
c1t

c1t−1

c0t

Figure 12.13: Initialization of E0 keystream generator.
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Attacks on E0. The combination used in E0 is vulnerable to several attacks, including a
linear attack [GBM02], some algebraic and fast algebraic attacks [Arm02, Cou03, HR04], and
some fast correlation attacks [LV04b]. But all these attacks require the knowledge of a huge
number of consecutive keystream bits generated from the same internal state, which is not
the case in the Bluetooth protocol since the generator is resynchronized after 2745 bits.

Nevertheless, some sophisticated correlation attacks due to Yi Lu, Willi Meier and Serge
Vaudenay [LV04a, LMV05] take the resynchronization process into account. The most efficient
attack recovers the secret key from the knowledge of the first 24 bits of 223.8 keystream frames.
Its time complexity corresponds to 238 operations. A better trade-off between the on-line
computation and the precomputation has been obtained in [ZXF13]. All these results imply
that the security level of the E0 stream cipher is very limited.

12.5 Correlation attacks on LFSR-based generators

The correlation attack was originally proposed by Siegenthaler in 1985 [Sie85] against the
combination generator composed of n LFSRs of lengths L1, . . . , Ln. The correlation attack
is a divide-and-conquer technique: it aims at recovering the initial state of each constituent
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LFSRs separately from the knowledge of some keystream bits (in a known plaintext attack).
This attack requires

∑n
i=1

(
2Li − 1

)
trials only, instead of the

∏n
i=1

(
2Li − 1

)
tests required

by an exhaustive search. A similar ciphertext only attack can also be mounted when there
exists redundancy in the plaintext, as mentioned in [Sie85].

12.5.1 General principle

More generally, the correlation attack applies to any keystream generator as soon as the
keystream is correlated to the output sequence σ of a “reduced generator” whose initial state
depends on some key bits only. These key bits can be determined by recovering the initial-
ization of σ as follows: an exhaustive search for the initialization of σ is performed, and the
correct one is detected by computing the correlation between the corresponding sequence σ
and the keystream. The following description concentrates on binary sequences.

More precisely, we assume as on Figure 12.14 that the internal state of the generator at
time t can be divided into two parts, xt and yt of respective sizes ` and (n − `), which are
updated independently by two functions Φ0 and Φ1. Suppose wlog. that the attacker aims at
recovering the first part of the initial state, x0. The input vector of the filtering function can
be decomposed into two parts, x and y according to the previous decomposition. Then, the
attack can be mounted if there exists a function g depending on ` variables (i.e., depending
on x only) whose output coincides with the output of f for more than half of the inputs. In
other words, if there exists an `-variable function g such that

pg = PrX,Y [f(X,Y ) = g(X)] >
1

2
.

The existence of such a function g and its optimal choice is discussed in Section 12.5.5.
If pg > 1/2, then the sequence σ(x0) produced by the reduced generator with initial

state x0 and filtering function g is correlated to the keystream s. Indeed, for all t ≥ 0,

Pr[st = σt] = pg >
1

2
.

12.5.2 Correlation attacks as a decoding problem

It has been observed by Meier and Staffelbach [MS89] that the previously described situation
corresponds to a classical problem in the context of error-correction. Indeed, if there exists
a correlation between the keystream s and the output σ of the reduced generator, then the
keystream subsequence (st)t<N can be seen as the result of the transmission of (σt)t<N through
the binary symmetric channel with error probability p = Pr[st 6= σt] = 1 − pg < 1/2 (see
Fig. 12.15). Moreover, if the transition function Φ0 of the reduced generator is linear, then
all bits of σ depend linearly on x0. Therefore, (σt)t<N is a codeword of a linear code C of
length N and dimension ` defined by Φ0. Thus, recovering the initial state x0 consists in
decoding the running-key subsequence relatively to this linear code.

From Shannon’s theorem, we know that (σt)t<N can only be decoded without errors if the
transmission rate of the code is lower than the capacity of the channel. The involved channel
is the binary symmetric channel with cross-over probability p = (1− pg). The capacity of the
channel is defined by

C(p) = 1 + p log2 p+ (1− p) log2(1− p) .
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Figure 12.15: Correlation attacks on LFSR-based stream ciphers seen as a decoding problem.

In most situations, pg is close to 1/2, i.e., pg = 1/2(1 + ε) with ε � 1. Then, we get the
following approximation

C

(
1

2
(1− ε)

)
= 1− 1

2 ln 2

[
(1− ε) ln

(
1− ε

2

)
+ (1 + ε) ln

(
1 + ε

2

)]
' 1− 1

2 ln 2
[(1− ε)(−ε) + (1 + ε)ε− 2 ln(2)]

= 1 +
ε2

2 ln 2
− 1 =

ε2

ln 2
.
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The transmission rate of the code is equal to `/N where ` is the size of the targeted part of
the initial state x0 and N is the number of known keystream bits. Then, we deduce from
Shannon’s theorem that the attack requires the knowledge of

N ≥ ` ln 2

ε2
keystream bits. (12.1)

Generator matrix for an LFSR-code. In the particular case where the internal state
xt of the reduced generator is updated by an LFSR of length `, the generator matrix of the
underlying code C can be easily computed from the characteristic polynomial of the LFSR.

Proposition 12.8. Let (σt)t≥0 be a sequence produced by an LFSR of length ` with charac-
teristic polynomial P ?. Then, for any N ≥ `, the `×N matrix G such that

(σ0, . . . , σN−1) = (σ0, . . . , σ`−1)G

is the matrix whose t-th column, 0 ≤ t < N corresponds to the coefficients of the polynomial
Xt mod P ?(X).

Proof. Let x0 denote the initial state of the reduced generator producing (σt)t≥0. From Propo-
sition 12.4, we know that, for any t ≥ 0,

σt = Tr(αtx0) = Tr

(
αt

(
`−1∑
i=0

σiβi

))
.

where α is a root of P ? and {β0, . . . , β`−1} is the dual basis of {1, α, . . . , α`−1}. Let Xt mod
P ?(X) =

∑`−1
j=0 djX

j . Then, by definition of α, we have that αt =
∑`−1

j=0 djα
j . It follows that

σt = Tr

`−1∑
j=0

djα
j

(`−1∑
i=0

σiβi

)
=

`−1∑
j=0

`−1∑
i=0

djσiTr(α
jβi)

=
`−1∑
i=0

diσi

by definition of the dual basis. This equivalently means that the t-th column of G corresponds
to the vector (d0, . . . , d`−1). �

12.5.3 Maximum-likelihood decoding for correlation attacks

The original correlation attack presented by Siegenthaler [Sie85] recovers the initial state x0

by performing a statistical test on the correlation between the observed keystream s and the
output of the reduced generator σ(x0) for all possible values of x0. This exactly corresponds to
a maximum-likelihood decoding procedure. Here, we describe the attack in terms of statistical
test as in the original paper.
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Proposition 12.9. Let (st)t≥0 and (σ)t≥0 be two sequences such that Pr[st 6= σt] = p for all
t ≥ 0. Then, the correlation between these two sequences computed over N bits,

C =
1

N

N−1∑
t=0

(−1)st+σt

is a random variable which follows a Gaussian distribution with mean (1 − 2p) and variance
4p(1− p)/N .

Proof. We write

C =
1

N

N−1∑
t=0

(1− 2(st ⊕ σt)) = 1− 2

N

N−1∑
t=0

(st ⊕ σt) .

The N variables (st ⊕ σt)0≤t<N are independent and follow a Bernoulli distribution with
mean p and variance p(1− p). Then, from the central limit theorem, we get that, for large N ,
the distribution of

1

N

N−1∑
t=0

(st ⊕ σt)

is close to the normal distribution with mean p and variance p(1− p)/N . Thus, C follows the
normal distribution with mean (1− 2p) and variance 4p(1− p)/N . �

In particular, the previous proposition implies that, if the two sequences are uncorrelated,
i.e., if p = 1/2, then C follows a normal distribution with mean 0 and variance 1/N .

If the two sequences (σt)t≥0 and (st)t≥0 are correlated, then all possible values for the
initial state x0 of σ are examined. The correct value for x0 can be detected by a classical
hypothesis testing (see Section 11.3.3 in Chapter 11). The corresponding algorithm is described
in Algorithm 8. The value of the correlation is compared to some threshold T , whose value is

Algorithm 8 Original correlation attack.
Input. s0s1 . . . sN−1, N keystream bits and p = Pr[st 6= σt] < 1/2.
Output. σ0 . . . σ`−1, the initial state of σ.
Compute the threshold T with (12.2)
for all σ0, . . . , σ`−1 do
Generate the first N bits of the sequence σ.
Compute the correlation between s0s1 . . . sN−1 and σ0σ1 . . . σN−1:

C ← 1

N

N−1∑
t=0

(−1)st+ut mod 2

if C > T then
return σ0 . . . σ`−1

end if
end for

chosen as follows in order to minimize the error probability. If the initial state of σ is correct
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(Hypothesis H1), then C follows a normal distribution with mean (1 − 2p) and variance
4p(1− p)/N . This means that

Pr[C = x] =
1

σ
√

2π
exp

(
−(x− (1− 2p))2

2σ2

)
with σ2 = 4p(1− p)/N . Otherwise (Hypothesis H0), we have

Pr[C = x] =

√
N

2π
exp

(
−Nx

2

2

)
.

For instance, these two distributions for N = 50 and p = 1/4 are plot on Figure 12.16.

Figure 12.16: Distributions of the correlation for N = 50 and p = 1/4. The red curve
corresponds to HypothesisH0 (no correlation), while the blue curve corresponds toH1 (correct
initial state).

Then, the false-alarm probability is

Pf =

√
N

2π

∫ +∞

T
exp

(
−Nx

2

2

)
dx =

1√
2π

∫ +∞

T
√
N

exp

(
−y

2

2

)
dy

= 1− 1√
2π

∫ T
√
N

−∞
exp

(
−y

2

2

)
dy = 1− Φ(T

√
N)

where Φ(x) is the cumulative distribution function of the standard normal distribution, i.e.,

Φ(x) =
1√
2π

∫ x

−∞
exp

(
−y

2

2

)
dy .

It is worth noticing that Φ can also be expressed by the means of the Gauss error function

Φ(x) =
1

2

[
1 + erf

(
x√
2

)]
.
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Similarly, the non-detection probability is given by

Pn =
1

σ
√

2π

∫ T

−∞
exp

(
−(x− (1− 2p))2

2σ2

)
dx

=
1√
2π

∫ T−(1−2p)
σ

−∞
exp

(
−y

2

2

)
dy = Φ

(
T − (1− 2p)

σ

)
.

We deduce that, for obtaining a given value of Pn, we need to choose the threshold such that

T − (1− 2p)

σ
= Φ−1(Pn)

or equivalently

T = (1− 2p) + 2Φ−1(Pn)

√
p(1− p)
N

. (12.2)

Moreover, we have
T
√
N = Φ−1(1− Pf )

implying that
√
N =

Φ−1(1− Pf )− 2Φ−1(Pn)
√
p(1− p)

1− 2p
.

Typical suitable values for Pf and Pn are Pn = 1.3× 10−3, i.e., Φ−1(Pn) = −3 and Pf = 2−`,
i.e., Φ−1(1− Pf ) '

√
`. With these values, we get that

N = O
(
`

ε2

)
where p =

1

2
(1− ε) .

It is worth noticing that we recover the data complexity deduced from Shannon’s theorem and
the value of the capacity of the binary symmetric channel. The time complexity of Algorithm 8
is then

Time = 2`N = O
(
`2`

ε2

)

Maximum-Likelihood decoding with an FFT. The time complexity of the previous
algorithm is prohibitive in most situations, except for very small values of `. However, it can
be significantly reduced when the transition function Φ0 is linear (i.e., if the underlying code C
is a linear code). Indeed, maximum-likelihood decoding consists in computing the distance
between the N -bit received word (i.e., the keystream in our case) and the 2` codewords in C.
When C is a linear code, this computation boils down to evaluating the Fourier transform of
the ternary function F from F`2 into {−1, 0, 1} defined by{

F (gt) = (−1)st for all 0 ≤ t < N
F (x) = 0 for all x 6∈ {gt, 0 ≤ t < N}

where gt is the t-th column of the generator matrix of C. Indeed, the correlation between
the keystream and the sequence σ produced from a given initial state x0 corresponds to the
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Fourier transform of F at point x0:

C(s,σ(x0)) =
1

N

N−1∑
t=0

(−1)st+σt

=
1

N

N−1∑
t=0

(−1)st+x0·gt

=
∑
x∈F`2

F (x)(−1)x0·x = F̂ (x0) .

Therefore, when the code length N (i.e., the data complexity of the attack) is large, the time
complexity can be reduced to 2`` with a Fast Fourier Transform algorithm [CJM02, Lu06].
However, ML-decoding remains usually infeasible when the size of targeted part of the initial
state, x0, is not very small, typically when ` ≥ 80. In this situation, the attack can only
be mounted by using some decoding algorithms faster than ML-decoding. The counterpart
is of course that such algorithms require a longer keystream segment than the optimal value
corresponding to Shannon’s theorem (see Equation (12.1)). These variants of the original
attack are usually named fast correlation attacks. They apply when the transition function of
the reduced generator is linear.

12.5.4 Iterative decoding with based on low-density parity-checks

The idea of using an iterative decoding procedure based on low-density parity check (LDPC)
equations comes back to Meier and Staffelbach [MS89], even if the algorithm they originally
proposed was less efficient than the classical decoding algorithm for LDPC introduced by
Gallager [Gal62]. The general principle of this decoding procedure consists in searching for a
large number of parity-check relations for C having a low weight w. By the means of these
relations, C can be seen as an LDPC code, for which there exist efficient decoding algorithms.

Low-weight parity-check equations Low-weight parity-check equations, i.e., with a small
number of terms, for the involved code C can be exploited in fast correlation, but also in many
other cryptanalytic techniques as they usually provide an efficient distinguishing procedure.
A parity-check equation for the code C corresponds to a set of columns in the generator matrix
which sum to zero. Equivalently, it can be seen as a codeword of the dual code C⊥.

If the transition function of the reduced generator corresponds to an LFSR, we deduce
from the structure of the LFSR code, that its parity-check equations have the following form

σt + σt+τ1 + . . .+ σt+τw−1 = 0, for all t ≥ 0

and are satisfied for any sequence σ generated by the LFSR. We know from Proposition 12.8
that the t-th column of the generator matrix of the LFSR code corresponds to the coefficients
of Xt mod P ?(X), where P ? is the characteristic polynomial of the LFSR. Therefore, there is
a bijection between such a parity-check equations and the polynomials

1 +Xτ1 + . . .+Xτw−1

which are multiples of the LFSR characteristic polynomial P ?. The weight of such an equation
is the number of its terms, or equivalently the Hamming weight of the corresponding word in
the dual code.



70 Chapter 12. LFSR-based Stream Ciphers

Degree of parity-check equations. The value τw−1 (i.e., the degree of the corresponding
polynomial) is also called the degree of the parity-check equation. For estimating the com-
plexity of the attack, we need to determine the number of parity-check equations with a given
weight w and with a degree less than some value d, when d varies. Usually, we assume that,
for a given w, when d is large enough, the values taken by the polynomials of weight w of
the form (1 + Xτ1 + Xτ2 + . . . + Xτw−1) mod P ?(X) for all 0 < τ1 < τ2 < . . . < τw−1 < d
are uniformly distributed in the set of all polynomials modulo P ? Under this hypothesis, the
number of parity-check equations of weight w and of degree at most d is roughly

mw(d) =

(
d

w−1

)
2degP ?

' dw−1

(w − 1)! 2degP ?
. (12.3)

However, the previous hypothesis does not hold in all situations. It would imply for instance
that, for any P ?, the number of codewords of weight exactly w in the dual of the LFSR code
C⊥ of length N = 2degP ? − 1 is always close to

Nw−1

w!
. (12.4)

But clearly, this number highly depends on the algebraic structure of the characteristic
polynomial. When P ? is a primitive polynomial, the corresponding LFSR code of length
N = 2degP ?−1 is equivalent to the simplex code (i.e., to the shortened first-order Reed-Muller
code) [MS77, Page 30]. Its dual is then equivalent to the Hamming code of length N . In
this case it can be checked that Formula (12.4) provides a good approximation of the weight
distribution [MS77, Page 129]. More generally, when P ? is a randomly chosen primitive poly-
nomial, simulation results show that (12.3) is a good estimation of the number of parity-check
relations of weight w and degree at most d, when d is not too small. It is worth noticing that
this holds even if P ? itself has weight w. Similarly, the minimal degree for a polynomial of
weight w multiple of P ? is close to

(w − 1)!
1

w−1 2
degP?

w−1 .

The situation is much more complicated when P ? is the product of two primitive polynomials.
Then, the previous estimation remains reasonable when the degrees of the polynomials involved
in the product are coprime, but does not hold in general. For instance, it is possible to
construct some examples where P ? is the product of two primitive polynomials having the
same degree and such that P ? has no multiple of degree 3 (see e.g. [CTZ01]).

Computing low-degree parity-check equations. There are several algorithms of com-
puting parity-check equations of weight w associated to a polynomial P . The simplest one is
described in Algorithm 9. More sophisticated ones are mentioned in [Jou09, Pages 384-386]
The corresponding time and memory complexity are

Time = O(dw−v−1) and Memory = O(dv) .

An interesting trade-off is then obtained for v = bw−1
2 c, leading to

Time = O(dd
w−1
2
e) and Memory = O(db

w−1
2
c) .

When w ≥ 5, an improved variant of this algorithm due to Chose, Joux and Mitton [CJM02]
allows to decrease the memory requirement to Memory = O(db

w
4
c) with the same time com-

plexity.
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Algorithm 9 Algorithm for computing multiples of P of weight w and degree at most d.
for each set (i1, . . . , iv) of v elements of {1, · · · , d} do
q(X)← Xi1 + . . .+Xiv mod P (X)
store q in a table T such that T [a] = {(i1, . . . , iv) : q(X) = a}.

end for
for each set (j1, . . . , jw−v−1) of w − v − 1 elements of {1, · · · , d} do
A← 1 +Xj1 + . . .+Xw−v−1 mod P (X)
for all (i1, . . . , iv) ∈ T [A] do
return 1 +Xi1 + . . .+Xiv +Xj1 + . . .+Xw−v−1

end for
end for

Iterative decoding of LDPC. A detailed comparison between several iterative decoding
algorithms can be found in [Lev04]. For instance, the slightly impaired but simple version
of Gallager’s algorithm proposed in [CT00] consists in iteratively updating the log-likelihood
ratio at each bit position, i.e., the quantity

log

(
Pr[σt = 0]

Pr[σt = 1]

)
.

It is described by Algorithm 10.

Algorithm 10 Iterative decoding algorithm for fast correlation attacks.
Input: s0s1 . . . sN−1, N keystream bits and p = Pr[st 6= σt] < 1/2.
/* Initialization */
for all t from 0 to N − 1 do
L[t]← log(1−p

p )
end for
repeat
for all t from 0 to N − 1 do
L′[t]← (−1)stL[t]
for all parity-check equations involving Position t, σt =

∑
j∈J σj do

L′[t]← L′[t] + (−1)
∑
j∈J sj min

j∈J
(L[j])

end for
end for

until convergence
for all t from 0 to N − 1 do
if L′[t] < 0 then
σt ← 0

else
σt ← 1

end if
end for
return (σ)t≥0
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The complexity of this algorithm highly depends on the number mw of parity-check equa-
tions of weight w required for convergence. The simulation results presented in [CT00] show
that the minimal number of equations can be estimated by

mw =
2 ln 2

ε2w−4
,

where ε = 1 − 2p and p is the error-probability. By combining this result with the expected
number of parity-check equations of weight w and degree at most N given by (12.3), we deduce
that the required data complexity is

N =

(
1

ε

) 2(w−2)
w−1

2
`

w−1

and the corresponding time complexity

Time =

(
1

ε

) 2w(w−2)
w−1

2
`

w−1 .

12.5.5 Existence of an approximation with fewer variables

As explained in Section 12.5.1, a (fast) correlation attack can be mounted only when the
Boolean function f of n variables involved in the keystream generator can be approximated
by a function g depending on fewer variables. Typically, in a combination generator composed
of n LFSRs, if the combining function f can be approximated by a function g of ` < n variables,
then the attack involves the initial states of only ` out of the n constituent LFSRs.

Correlation-immunity order. A natural counter-measure to avoid correlation attacks con-
sists then in using as building-blocks a correlation-immune function in the sense of the following
definition.

Definition 12.10 (Correlation-immunity [Sie84]). A Boolean function f is t-th order correlation-
immune if the probability distribution of its output is unaltered when any t input variables are
fixed. Balanced t-th order correlation-immune functions are called t-resilient.

Note that a t-th order correlation-immune function is k-th order correlation-immune for
any k ≤ t. The correlation-immunity order of a function f then refers to the highest integer t
such that f is t-th order correlation-immune.

In a combination generator, the correlation-immunity order t of the combining function
determines the minimal number of LFSRs which must be considered together in a correlation
attack. Indeed, the keystream produced by the combination generator is then independent
of any set of t constituent LFSRs. The smallest number of LFSRs involved in a correlation
attack is therefore t+ 1. But the correlation-immunity order of a Boolean function cannot be
chosen as high as we wish: it is limited by the algebraic degree of the function as shown in
the next proposition.

Proposition 12.11. [Sie84] Let f be a Boolean function of n variables. Then its correlation-
immunity order t satisfies

t+ deg f ≤ n .
Moreover, if f is balanced and t < n− 1, then

t+ deg f ≤ n− 1 .
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Proof. Let u ∈ Fn2 such that wt(u) ≥ n− t. We compute the coefficients of the ANF of f with
Theorem 10.3. For L = {1, . . . , n} \ Supp(u), we have

au =
∑

xi=0,i∈L
f(x1, . . . , xn) mod 2 = 2−(n−wt(u))wt(f) mod 2

where the last equality comes from the fact that the probability distribution of the output of f
is unchanger when the (n − wt(u)) ≤ t variables defined by L are set to 0. If f is balanced,
i.e., wt(f) = 2n−1, we get that, for all u with wt(u) ≥ n− t,

au = 2wt(u)−1 mod 2 = 0

since wt(u)− 1 ≥ n− t− 1 > 0. In other words, all coefficients of degree greater than or equal
to (n− t) in the ANF of f are equal to zero, which means than deg f < n− t.

If f is not balanced, we select some word u? of weight (n− t). Then,

au? = 2−twt(f) mod 2

implying that wt(f) = 2tau? + Λ2t+1 for some integer Λ. Now, for any u of weight (n− t+w)
with w ≥ 1, we get

au = 2−t+wwt(f) = 2wau? + Λ2w+1 = 0 mod 2 .

This means that all coefficients in the ANF of degree greater than or equal to (n − t + 1)
vanish, i.e. deg f ≤ n− t. �

Approximation of a function by a function of (t+ 1) variables. Since the combining
function in a combination generator is balanced and nonlinear, its correlation-immunity order
is at most (n− 3). It follows that we can always apply a correlation attack by considering at
most ` = (n− 2) LFSRs together. We now show how to determine the best approximation of
f by a Boolean function g depending on a fixed subset of ` variables.

Proposition 12.12. [Can02, Zha00] Let f be a function of n variables and let L be a subset
of {1, . . . , n} of cardinality `, L = {i1, . . . , i`}. The highest possible value over all `-variable
functions g of

pg = PrX [f(X1, . . . , Xn) = g(Xi1 , . . . , Xi`)]

is achieved if and only if{
g(x) = 1 if PrY [f(X,Y ) = 1|X = x] > 1

2
g(x) = 0 if PrY [f(X,Y ) = 1|X = x] < 1

2

It follows that the maximum of pg is

max
g
pg =

1

2
+

1

2`

∑
x∈F`2

∣∣∣∣12 − PrY [f(X,Y ) = 1|X = x]

∣∣∣∣ .
Proof. Let us decompose the n input variables of f as (X,Y ) where X corresponds to the
` variables of index i1, . . . , i`, and Y to the (n − `) remaining variables. Let pL(x), x ∈ F`2,
denote the probability pL(x) = PrY [f(X,Y ) = 1|X = x]. In other words, pL(x) is the
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probability that f outputs 1 when the ` inputs in positions L are fixed and equal to x. For
any `-variable g we have

pg = PrX,Y [f(X,Y ) = g(X)]

= 2−`

 ∑
x∈g−1(0)

Pr[f(X,Y ) = 0|X = x] +
∑

x∈g−1(1)

Pr[f(X,Y ) = 1|X = x]


= 2−`

∑
x∈g−1(0)

(1− pL(x)) + 2−`
∑

x∈g−1(1)

pL(x)

= 2−`|g−1(0)| − 2−`
∑
x∈F`2

(−1)g(x)pL(x)

=
1

2
+ 2−`−1

∑
x∈F`2

(−1)g(x) − 2−`
∑
x∈F`2

(−1)g(x)pL(x)

=
1

2
+ 2−`

∑
x∈F`2

(−1)g(x)

(
1

2
− pL(x)

)
.

It follows that pg is maximal if and only if all terms in the sum are greater than or equal to
zero, or equivalently

g(x) =

{
0 if pL(x) < 1/2,
1 if pL(x) > 1/2 .

(12.5)

Note that the value of g(x) can be arbitrarily chosen when pL(x) = 1
2 . The maximal value of

pg directly follows. �

The previous proposition obviously implies that the maximal value of pg is 1/2 if ` is less
than or equal to the correlation-immunity order of f since all PrY [f(X,Y ) = 1|X = x] = 1/2
in this case. Another consequence is that, for ` = t + 1 where t is the correlation-immunity
order of f , the maximal value of pg is achieved by an affine function.

Theorem 12.13. [CT00] Let f be a t-resilient function of n variables and let L be a subset
of {1, . . . , n} of cardinality (t + 1), L = {i1, . . . , it+1}. The highest possible value over all
(t+ 1)-variable functions g of

pg = PrX [f(X1, . . . , Xn) = g(Xi1 , . . . , Xit+1)]

is achieved by the affine function

g(xi1 , . . . , xit+1) =
∑
i∈L

xi + ε

with ε ∈ F2.

Proof. We here use the same notation as in the proof of the previous proposition. For any
j ∈ L, ej denotes the (t+ 1)-bit vector whose all coordinates are zero except the j-th one. We
first prove that, for any x ∈ Ft+1

2 and any j ∈ L, pL(x) + pL(x+ ej) = 1. Indeed, we have

pL(x) + pL(x+ ej) = Pr[f(X,Y ) = 1|X = x] + Pr[f(X,Y ) = 1|X = x+ ej ]

= 2 (Pr[f(X,Y ) = 1|∀i ∈ L,Xi = xi]Pr[Xj = xj ]+

Pr[f(X,Y ) = 1|∀i ∈ L \ {j}, Xi = xi, Xj 6= xj ]Pr[Xj 6= xj ])

= 2Pr[f(X,Y ) = 1|∀i ∈ L \ {j}, Xi = xi] = 1
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where the last equality comes from the fact that f is t-resilient and that the set L \ {j} has
cardinality t. Let g be a (t + 1)-variable function such that pg is minimal. Since pL(x) +
pL(x+ ej) = 1 for any x ∈ Ft+1

2 and for any j ∈ L, Condition (12.5) implies that

g(x) + g(x+ ej) = 1

when pL(x) 6= 1
2 . Moreover, we can assume that this relation is satisfied for any x ∈ Ft+1

2 ,
because the value of g(x) can be arbitrarily chosen when pL(x) = 1

2 . It follows that, for any
x ∈ Ft+1

2 ,
g(x) = g(0) +

∑
i∈L

xi .

This probability is then maximized when (−1)g(0) and
(
PrX [f(X) =

∑
i∈LXi]− 1

2

)
have the

same sign. �

This result is of great interest because the degree of the approximation g affects the linear
complexity of the reduced generator. Indeed, σ is produced by a smaller combining generator
composed of ` = t + 1 (or more) LFSRs combined by g. Then, we know from Section 12.3.1
that the linear complexity of σ depends on the degree of g. The previous result then shows
that, in a fast correlation attack involving the smallest number of LFSRs, i.e. (t+1), the same
combining function g minimizes both the error probability (1− pg) and the linear complexity
of σ. In this context, since g has degree 1, the minimal polynomial of σ is the least common
multiple of the minimal polynomials P ?i of the considered LFSRs [Zie59]. In most practical
situations, we have P ? =

∏t+1
j=1 P

?
ij

since all the involved feedback polynomials are primitive.
The N -bit keystream (st)t<N can then be seen as the result of the transmission through a
noisy channel of a codeword of a linear code of dimension

∑t+1
j=1 Lij . The previously described

decoding algorithm then applies and the analysis of its complexity tends to show that designing
a combination generator which provides a reasonnable security is a very difficult (or even
impossible) task.

Correlation-immunity order and dual distance of a code. The correlation-immunity
order of a Boolean function f can be characterized by a combinatorial property of the code
formed by the support of f , i.e., by f−1(1). This combinatorial property corresponds to the
notion of orthogonal array [Rao47].

Proposition 12.14. [CCCS92] Let f be a Boolean function of n variables and let Cf be the
code corresponding to its support, i.e., Cf = {x ∈ Fn2 : f(x) = 1}. Then, f is t-th order
correlation immune if and only if any set of t columns in Cf contains the same number of
occurences of every t-tuple.

Moreover, if Cf is a linear code, then f is t-th order correlation immune if and only the
minimum distance of C⊥f is strictly greater than t.

Proof. By definition Cf has cardinality wt(f). Let us consider any subset T ⊂ {1, . . . , n} of
size t. Then, f is t-order correlation-immune if and only if, for any fixed value a of the input
variables at the positions defined by T , the set {f(x), x ∈ Fn2 and xi = ai∀i ∈ T} contains
exactly 2−twt(f) ones. This equivalently means hat Cf contains exactly 2−twt(f) words which
are equal to a at the positions defined by T .

If Cf is a linear code and G denotes a k × n generator matrix of Cf , then the previous
condition means that, for any k × t submatrix GT of G, the linear system mGT = a has 2k−`
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solutions for any a. This is equivalent to the fact that any k× t submatrix GT of G has rank t,
i.e., any set of t columns of G are linearly independent. Now, we show that this condition is
equivalent to the fact that the minimum distance of C⊥f is greater than t. Indeed C⊥f contains
a codeword x if and only if Gx = 0, i.e., the wt(x) columns of G corresponding to the support
of x sum to zero. In other words, the minimum distance of C⊥f is greater than or equal to d⊥

if and only if any set of w < d⊥ columns of G are linearly independent. �

The previous proposition shows that correlation-immunity order of a linear function is
determined by the minimum distance of the dual of the code corresponding to its support. A
very nice property is that this result holds even if the underlying code is not linear. In this
situation, the dual distance can be defined as follows.

Definition 12.15 (Dual distance of a code [Del73]). Let C be a binary code of length n and
size M , and (A0, . . . , An) be its distance distribution, i.e.,

Ai =
1

M
|{(x, y) ∈ C × C, d(x, y) = i}| .

Let (A′0, . . . , A
′
n) be the vector obtained by applying the MacWilliams transform:

n∑
i=0

A′iX
n−iY i =

1

M

n∑
i=0

Ai(X + Y )n−i(X − Y )i .

The dual distance of C is the smallest non-zero integer i such that A′i 6= 0.

Obviously, when C is linear, its dual distance corresponds to the minimum distance of the
dual code. Now, we will show that, even in the nonlinear case, the dual distance of Cf is
related to the correlation-immunity of f . We will need the following lemma.

Lemma 12.16. Let C be a binary code of length n. Then any set of t columns in C contains the
same number of occurences of every t-tuple if and only if for any y ∈ Fn2 with 1 ≤ wt(y) ≤ t,∑

x∈C
(−1)x·y = 0 .

Proof. Let us first consider some T ⊂ {1, . . . , n} of size t and some nonzero y ∈ Fn2 such that
supp(y) ⊂ T . For any a ∈ Ft2, we denote by NT (a) the number of codewords in C which are
equal to a at the positions defined by T . Then, we have∑

x∈C
(−1)x·y =

∑
a∈F`2

(−1)a·yTNT (a) . (12.6)

where yT denotes the restriction of y to the positions in T . Now, we suppose that, for any T
of size t, we have NT (a) = M2−t for all a. We consider any nonzero y of weight at most t and
we choose T of size t such that supp(y) ⊂ T . Then,

∑
x∈C

(−1)x·y =
M

2t

∑
a∈F`2

(−1)a·yT

 = 0 ,
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since yT 6= 0. Conversely, we consider any subset T ⊂ {1, . . . , n} of size t. We deduce from
(12.6) that, for any β ∈ Ft2∑

yT∈Ft2

(−1)β·yT

(∑
x∈C

(−1)x·(yT ,0)

)
=

∑
yT∈Ft2

(−1)β·yT
∑
a∈Ft2

(−1)a·yTNT (a)

=
∑
a∈Ft2

NT (a)

 ∑
yT∈Ft2

(−1)(a+β)·yT

 = 2tNT (β) ,

by using that
∑

yT∈Ft2
(−1)(α+β)·yT = 0 except for α + β = 0. Then, if all

(∑
x∈C(−1)x·y

)
vanish when wt(y) ≤ t except for y = 0, we get that, for all β.

2tNT (β) =
∑
x∈C

(−1)x·0 = M .

Both properties are then equivalent. �

A direct corollary of the previous lemma is the following characterization of correlation-
immune functions in terms of Walsh transform [XM88].

Corollary 12.17. Let f be a Boolean function of n variables. Then, f is t-th order correlation-
immune if and only if for any y such that 1 ≤ wt(y) ≤ t,∑

x∈Fn2

(−1)f(x)+x·y = 0 .

Proof. This is derived from the previous lemma by using that for any y 6= 0∑
x∈Fn2

(−1)f(x)+x·y =
∑

x∈f−1(0)

(−1)x·y −
∑

x∈f−1(1)

(−1)x·y = −2
∑

x∈f−1(1)

(−1)x·y .

�

Now, we can prove that the correlation-immunity order of a Boolean function is related to
the dual distance of Cf = f−1(1).

Theorem 12.18 (Correlation-immunity order and dual distance [BGS94, SM95]). Let f be
a Boolean function of n variables and let Cf be the code corresponding to its support, i.e.,
Cf = {x ∈ Fn2 : f(x) = 1}. Then, f is t-th order correlation immune if and only if the dual
distance of Cf is strictly greater than t.

Proof. By combining Proposition 12.14 and Lemma 12.16, we see that we need to show that
Cf has dual distance d⊥ if and only if any nonzero y of weight at most (d⊥ − 1) satisfies∑

x∈Cf

(−1)x·y = 0 .

The MacWilliams identity can be written by means of Krawtchouk polynomials

A′i = 2−k
n∑
j=0

AjPi(j), ∀0 ≤ i ≤ n ,
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with

Pk(i) =
k∑
j=0

(−1)j
(
i

j

)(
n− i
k − j

)
.

We first prove a well-known property of Krawtchouk polynomials: for any x ∈ Fn2 with
wt(x) = i, ∑

y∈Fn2 ,wt(y)=j

(−1)x·y = Pj(i) .

Let I denote the support of x. Since x · y corresponds to the size of the intersection between
the supports of x and y, we get

∑
y∈Fn2 ,wt(y)=j

(−1)x·y =
∑

J⊂{1,...,n},|J |=j

(−1)|I∩J | =

j∑
`=0

(−1)`NI(`)

where
NI(`) = |{J ⊂ {1, . . . , n} avec |J | = j : |I ∩ J | = `}| =

(
i

`

)(
n− i
j − `

)
.

We deduce that

∑
y∈Fn2 ,wt(y)=j

(−1)x·y =

j∑
`=0

(−1)`
(
i

`

)(
n− i
j − `

)
= Pj(i) .

Let us now consider some integer w, 1 ≤ w ≤ n. Let us define the matrix Mw of size M ×
(
n
w

)
whose rows are indexed by the words of Cf and whose columns are indexed by the n-bit words
of weight w by

(Mw)x,y = (−1)x·y .

Multiplying Mw by its transpose, we get that the coefficient of index (x, x′) of Mw(Mw)T is(
Mw(Mw)T

)
x,x′

=
∑

y∈Fn2 ,wt(y)=w

(−1)(x+x′)·y = Pw(d(x, x′)) .

Then, we deduce

1
(
MwM

T
w

)
1T = (1Mw) (1Mw)T =

∑
y∈Fn2 ,wt(y)=w

∑
x∈Cf

(−1)x·y

2

.

Therefore,

∑
y∈Fn2 ,wt(y)=w

∑
x∈Cf

(−1)x·y

2

= 1
(
MwM

T
w

)
1T

=
∑

x,x′∈Cf

Pw(d(x, x′)) = M

n∑
i=0

AiPw(i) = M2A′w .

It follows that A′w = 0 if and only if
∑

x∈Cf (−1)x·y = 0 for all y ∈ Fn2 with wt(y) = w. �
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Chapter 13

Attacks on block ciphers

Block ciphers are the most widely used primitives for ensuring data confidentiality. The
existence of several modes of operation leads to encryption schemes with different features and
with a reasonable throughput (typically around 20 cycles for encrypting one byte). Therefore,
block-cipher-based encryption schemes are appropriate in the vast majority of applications.
Another advantage is that these ciphers received a lot of attention since the publication of the
DES in the 70s. The most prominent attacks against block ciphers, i.e., differential and linear
cryptanalysis, have been developed more than 20 years ago. They are now well-understood
and modern block ciphers are designed based on a methodology which guarantees that they
are resistant against all these classical attacks.

13.1 Block Cipher Basics

Designing an encryption scheme is a difficult task in particular because it needs to handle mes-
sages of an arbitrary length. Therefore, many encryption schemes result from the combination
of a cipher operating on fixed-length inputs, named a block cipher, and of a mode of operation
which describes how this cipher is iteratively used for encrypting data of an arbitrary length.

Definition 13.1. Let n and κ be two positive integers. A block cipher with block-size n and
key-size κ is a family of 2κ permutations Ek of Fn2 , indexed by a key k ∈ Fκ2 .

In the following, this family is denoted by (Ek)k∈Fκ2 or by (Ek)k when the key-size is
not specified. In practical applications, the key is the single secret parameter within the
encryption scheme. Then, the classical security requirement for a block cipher (Ek)k is that
there is no algorithm for recovering the secret key k from the knowledge of some pairs of
inputs and outputs of Ek which is significantly more efficient than an exhaustive search for
the key. However, the security of modes of operation is usually proved by modeling the block
cipher by a pseudo-random permutation. Therefore, a stronger requirement is that a random
instance of the block cipher, i.e., Ek for a random secret key k, should be computationally
indistinguishable from a random permutation (see e.g. [BR05] for formal definitions of the
notions of pseudo-random permutation and of strong pseudo-random permutation). Defining
a block cipher then boils down to defining 2κ permutations, as if they had been randomly
chosen among all permutations of Fn2 .

83
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13.1.1 Iterated ciphers

For implementation reasons, all classical block ciphers are iterated ciphers: they are composed
of several round-permutations Fi of Fn2 , where each Fi, 1 ≤ i ≤ r, is parametrized by a secret
quantity ki named the round-key, which is derived from the master key k by a key-scheduling
algorithm (see Figure 13.1). Parameter r is the number of rounds in the cipher.

F1
- F2

-
b bb

... Fr ---

key schedule

? ? ?

?

k1 k2 kr

plaintext x y ciphertext

k master key

Figure 13.1: Iterated block cipher.

In such an iterated cipher, the r round-permutations Fi are usually chosen to be very
similar for two reasons. First, the implementation cost of the iterated cipher in hardware, in
terms of number of gates or circuit area, is then roughly reduced to the implementation cost
of a single round. Moreover, this type of design provides some simple security arguments.
Indeed, it enables the designer to directly derive some property on r rounds of the cipher
from a similar property on fewer rounds. However, the rounds should be slightly different in
order to resist some structural attacks such as slide attacks [BW99]. This difference may be
introduced by the key schedule, i.e., all round permutations can be identical but with different
round-keys, or the round permutations may be slightly different, for instance a round-constant
can be added to the output. In this second case, all round-keys may be identical. For instance,
the block cipher standard AES [FIP01] follows the first construction, while the block cipher
LED [GPPR11] follows the second one.

13.1.2 The main types of round functions

There are basically two main constructions for the round permutation: the Feistel construction
(and its variants), and the SPN construction.

Feistel ciphers.

The first one is the Feistel construction proposed by Horst Feistel in Lucifer and then used
in the former standard DES [FIP99]. It relies on an inner function fK operating on inputs
of size half of the block-size, as depicted on Figure 13.2. This smaller function itself is often
composed of several building-blocks. The Feistel construction presents several advantages:
first its implementation cost for a given block-size n corresponds to the cost of an n/2-bit
function. A second advantage is that the round function is an involution (up to the swap of
the two inputs), implying that the decryption function is the same as the encryption function,
except that the round-keys have to be considered in reverse ordering. This implies that the
overhead of decryption on top of encryption is negligible in a Feistel cipher.

The Feistel construction has been widely studied and many results are known which analyze
the security of a Feistel cipher by the means of the cryptographic properties of the inner
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Figure 13.2: Round function in a Feistel cipher.

function. This includes several indistinguishability results [LR88, Pat04] or some results on
the resistance against classical statistical attacks [NK95, Nyb95].

Also, there exist some variants of the Feistel construction which allow a higher implemen-
tation flexibility, or achieve better performance, including unbalanced Feistel ciphers [SK96],
generalized Feistel ciphers [Nyb96] and the MISTY construction [Mat97].

Substitution-Permutation Networks.

Substitution-permutation networks (SPN) are a particular case of the so-called key-alternating
construction [DR01], which is sometimes referred to as the iterated Even-Mansour construc-
tion [EM93]. It consists of an alternation of key-independent round permutations and of
round-key additions, where the addition is defined over the vector space Fn2 . Obviously, any
operation which can be computed from the plaintext (or from the ciphertext) without in-
volving the secret key does not contribute to the security of the block cipher. Therefore, a
key-alternating cipher should both start and end by a round-key addition. Such a cipher is
depicted on Figure 13.3.
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Figure 13.3: Key-alternating cipher.

Moreover, the design strategy for the round permutation in an SPN follows the principles
introduced by Shannon [Sha49]:

• confusion means making “the relation between the simple statistics of the ciphertext and
the simple description of the key a very complex and involved one.” This implies for
instance that any algebraic relation between these quantities must have a high degree
and a large number of terms.
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• diffusion means “dissipating the statistical structure of the plaintext into long range
statistics.” This implies that all plaintext bits and key bits must influence all ciphertext
bits.

Then, the key idea behind the SPN construction is to decompose the round function into
two distinct steps: a nonlinear substitution function Sub for providing confusion and a linear
permutation for providing diffusion. Indeed, there is no need for a nonlinear function for
providing diffusion since the nonlinearity is already guaranteed by the substitution part. The
bottleneck when implementing such a round permutation is the implementation cost of the
nonlinear substitution function. Therefore, the classical solution consists in choosing for Sub
a permutation corresponding to the concatenation of several copies of a permutation S which
operates on a smaller alphabet. This smaller substitution function, which is the only nonlinear
part in the cipher, is called the S(ubstitution)-box, by analogy with the terminology used in
the former standard DES. In the following, an Sbox refers to a vectorial Boolean function, i.e.,
a function from Fn2 into Fm2 . In particular, a function from Fn2 into Fn2 is called an n-bit Sbox.
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Figure 13.4: Round-permutation of a substitution-permutation network.

The security of this construction with respect to classical statistical attacks will then be
discussed in Sections 13.5 and 13.6.

13.2 The AES

When the key-size of the former standard DES has become too small, the NIST has launched
a public competition in 1997 to design a successor to the DES. All designers have been invited
to submit a block cipher operating on 128-bit blocks, and able to accommodate three different
key-sizes, namely 128, 192 and 256 bits. Fifteen proposals have been submitted in 1998,
out of which the new standard has been selected in 2000 after a public evaluation process.
The selected block cipher, formerly named Rijndael but now known as the AES (Advanced
Encryption Standard), has been designed by Joan Daemen and Vincent Rijmen. It follows the
SPN construction. The three variants only differ from the number of rounds (which is r = 10
for 128-bit keys, 12 for 192-bit keys and 14 for 256-bit keys) and from the key-schedule [FIP01].

The 128-bit word corresponding to the plaintext, and to the input of all successive rounds,
is usually represented as a 4×4 matrix of bytes. The round function consists of the successive
applications of the following four permutations:

• SubBytes is the substitution function. It consists of the parallel application of the same
8-bit permutation S to each input byte;

• ShiftRows rotates the rows of the matrix of bytes. More precisely, Row i, 0 ≤ i ≤ 3, is
rotated to the left by i positions;
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• MixColumns is a linear transformation, applied in parallel to each column of the matrix.
It is defined by a 4× 4 matrix with coefficients in F28 ;

• AddRoundKey is the round-key insertion which corresponds to a bitwise xor.

All iterations of the round function are identical, except the last one which does not include
the MixColumns transformation (see Fig 13.5).

13.2.1 The AES Sbox

The AES Sbox, which operates in parallel on each byte of the input of the round function is
equivalently defined as a permutation of the finite field with 28 elements. The isomorphism
between the field F28 and the vector space F8

2 is given by

(x0, x1, . . . , x7) ∈ F8
2 7→

7∑
i=0

xiX
i

where all operations are modulo the irreducible polynomial

X8 +X4 +X3 +X + 1.

With this identification, the AES Sbox corresponds to the inversion in F28 (where the inverse
of 0 is 0), i.e.,

x ∈ F28 7→ x254,

followed by an affine function over F8
2:

y0

y1

y2

y3

y4

y5

y6

y7


=



1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1





x0

x1

x2

x3

x4

x5

x6

x7


+



1
1
0
0
0
1
1
0


.

13.2.2 MixColumns

This 32-bit permutation applies to each column of the internal state. Here, the vector space
F32

2 is identified with (F28)4 by the previously described isomorphism. Then, MixColumns is
an F28-linear function defined as follows

y0

y1

y2

y3

 =


α α+ 1 1 1
1 α α+ 1 1
1 1 α α+ 1

α+ 1 1 1 α



x0

x1

x2

x3


where α is a root of X8 +X4 +X3 +X + 1.
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13.2.3 The AES key-schedule

The (Nr + 1) subkeys, where Nr denotes the number of rounds, are derived from the master
key by Algorithm 11. These subkeys are represented in an array of 32-bit words, whose 128-bit
blocks correspond to the subkeys. The first words in this array are initialized by the master
key, implying that the first round-key corresponds to the first 128 key-bits.

Algorithm 11 AES key-schedule for a 32Nk-bit key, Nk ∈ {4, 6, 8}.
/* Initialization of the number of rounds */
if Nk = 4 then
Nr ← 10

else if Nk = 6 then
Nr ← 12

else if Nk = 8 then
Nr ← 14

end if
/* Construction of the subkey array w0, . . . , w4Nr+3 */
for i from 1 to Nk − 1 do
wi ← Word i of K.

end for
for i from Nk to 4Nr + 3 do
t← wi−1

if i ≡ 0 mod Nk then
Rotate to the left the bytes of t
Apply the Sbox to the four bytes of t
Add to the first byte of t the round constant αi/Nk−1 defined in F28 .

else if i ≡ 4 mod Nk and Nk = 8 then
Apply the Sbox to the four bytes of t

end if
wi ← wi−Nk + t

end for

The full AES-128 is depicted on Figure 13.5. Unlike Feistel ciphers, the decryption process
for the AES is not directly derived from the encryption function and requires the inverses of
the previously described transformations. More details can be found in the NIST publication
FIPS 197 [FIP01].

13.3 Algebraic attacks on block ciphers

13.3.1 Basic algebraic attack

The basic principle of algebraic attacks goes back to Shannon’s work [Sha49, Page 711]: these
techniques consist in expressing the whole cipher as a large system of multivariate algebraic
equations. In a known-plaintext attack, the plaintext and ciphertext bits are then replaced by
their values and the unknowns correspond to the key bits. The secret key can then be recovered
by solving this algebraic system. A major parameter which influences the complexity of such
an attack is then the degree of the underlying system.
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A naive method for solving such a system of degree d is the linearization. It consists
in identifying the system with a linear system of

∑d
i=1

(
n
i

)
variables, where each product of

i initial variables (1 ≤ i ≤ d) is seen as a new variable. The solution is then found by a
Gaussian reduction (or by more sophisticated techniques) whose time complexity is roughly(

d∑
i=1

(
n

i

))ω
' nωd ,

where ω is the exponent of the matrix inversion algorithm, i.e., ω ' 2.37 [CW90]. Some
much more sophisticated techniques exist for solving polynomial systems over F2. Actually,
this problem has been extensively studied in computer algebra and it is well-known that some
methods based on Gröbner basis algorithms efficiently apply, see e.g. [Fau99, Ste04, Fau02].
Some ad-hoc techniques including XL [CKPS00] or XSL [CP02] have also been proposed. See
e.g. [Cid04] and [CAA+08] for a discussion on these algorithms.
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Example 13.1. (inspired from [KR11]). Let us consider a toy-cipher composed of a single-
round key-alternating cipher which operates on 4-bit inputs under an 8-bit key (K0,K1).

m −→
K0
↓
⊕ −→ u −→ S −→ v −→

K1
↓
⊕ −→ c

The inner permutation of F4
2 is defined (with hexadecimal notation) by

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S(x) f e b c 6 d 7 8 0 3 9 a 4 2 1 5
S1(x) 1 0 1 0 0 1 1 0 0 1 1 0 0 0 1 1
S2(x) 1 1 1 0 1 0 1 0 0 1 0 1 0 1 0 0
S3(x) 1 1 0 1 1 1 1 0 0 0 0 0 1 0 0 1
S4(x) 1 1 1 1 0 1 0 1 0 0 1 1 0 0 0 0

The Möbius transform enables us to compute the ANF of the four coordinates of this Sbox:

S1 = 1 + x1 + x3 + x2x3 + x4 + x2x4 + x3x4 + x1x3x4 + x2x3x4

S2 = 1 + x1x2 + x1x3 + x1x2x3 + x4 + x1x4 + x1x2x4 + x1x3x4

S3 = 1 + x2 + x1x2 + x2x3 + x4 + x2x4 + x1x2x4 + x3x4 + x1x3x4

S4 = 1 + x3 + x1x3 + x4 + x2x4 + x3x4 + x1x3x4 + x2x3x4

Using these algebraic expressions, we can now express each ciphertext bit ci, 1 ≤ i ≤ 4, as a
multivariate polynomial in the plaintext bits m1, . . . ,m4 and in the key bits k1, . . . , k8:

c1 + k5 = 1 + (m1 + k1) + (m3 + k3) + (m2 + k2)(m3 + k3) + (m4 + k4) + (m2 + k2)(m4 + k4)

+(m3 + k3)(m4 + k4) + (m1 + k1)(m3 + k3)(m4 + k4) + (m2 + k2)(m3 + k3)(m4 + k4)

c2 + k6 = 1 + (m1 + k1)(m2 + k2) + (m1 + k1)(m3 + k3) + (m1 + k1)(m2 + k2)(m3 + k3) + (m4 + k4)

+(m1 + k1)(m4 + k4) + (m1 + k1)(m2 + k2)(m4 + k4) + (m1 + k1)(m3 + k3)(m4 + k4)

c3 + k7 = 1 + (m2 + k2) + (m1 + k1)(m2 + k2) + (m2 + k2)(m3 + k3) + (m4 + k4) + (m2 + k2)(m4 + k4)

+(m1 + k1)(m2 + k2)(m4 + k4) + (m3 + k3)(m4 + k4) + (m1 + k1)(m3 + k3)(m4 + k4)

c4 + k8 = 1 + (m3 + k3) + (m1 + k1)(m3 + k3) + (m4 + k4) + (m2 + k2)(m4 + k4) + (m3 + k3)(m4 + k4)

+(m1 + k1)(m3 + k3)(m4 + k4) + (m2 + k2)(m3 + k3)(m4 + k4)
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Every plaintext-ciphertext pair then provides four equations in the eight key-bits:

c1 + k5 = S1(m) + (1 +m3m4)k1 + (m3 +m4 +m3m4)k2 + (1 +m2 +m4 +m1m4 +m2m4)k3

+(1 +m2 +m3 +m1m3 +m2m3)k4 +m4k1k3 +m3k1k4 + (1 +m4)k2k3 + (1 +m3)k2k4

+(1 +m1 +m2)k3k4 + k1k3k4 + k2k3k4

c2 + k6 = S2(m) + (m2 +m3 +m2m3 +m4 +m2m4 +m3m4)k1 + (m1 +m1m3 +m1m4)k2

+(m1 +m1m2 +m1m4)k3 + (1 +m1 +m1m2 +m1m3)k4 + (1 +m3 +m4)k1k2

+(1 +m2 +m4)k1k3 + (1 +m2 +m3)k1k4 +m1k2k3 +m1k2k4 +m1k3k4 + k1k2k3

+k1k2k4 + k1k3k4

c3 + k7 = S3(m) + (m2 +m2m4 +m3m4)k1 + (1 +m1 +m3 +m4 +m1m4)k2

+(m2 +m4 +m1m4)k3 + (1 +m2 +m3 +m1m2 +m1m3)k4 + (1 +m4)k1k2

+m4k1k3 + (m2 +m3)k1k4 + k2k3 +m1k3k4 + (1 +m1)k2k4 + k3k4 + k1k2k4 + k1k3k4

c4 + k8 = S4(m) + (m3 +m3m4)k1 + (m4 +m3m4)k2 + (1 +m1 +m4 +m1m4 +m2m4)k3

+(1 +m2 +m3 +m1m3 +m2m3)k4 + (1 +m4)k1k3 + (m3)k1k4 +m4k2k3

+(1 +m3)k2k4 + (1 +m1 +m2)k3k4 + k1k3k4 + k2k3k4

For instance, the knowledge of E(0) = 0x4 leads to

c1 + k5 = 1 + k1 + k3 + k4 + k2k3 + k2k4 + k3k4 + k1k3k4 + k2k3k4

c2 + k6 = 1 + k4 + k1k2 + k1k3 + k1k4 + k1k2k3 + k1k2k4 + k1k3k4

c3 + k7 = 1 + k2 + k4 + k1k2 + k2k3 + k2k4 + k3k4 + k1k2k4 + k1k3k4

c4 + k8 = 1 + k3 + k4 + k1k3 + k2k4 + k3k4 + k1k3k4 + k2k3k4

By collecting such equations, we get a polynomial system of degree 3 with 8 unknowns. Then,
we can linearize the system by identifying each monomial in the key bits of degree 2 or 3 with
a new unknown:

k9 = k1k2, k10 = k1k3, . . . k14 = k3k4, k15 = k1k2k3, . . . , k18 = k2k3k4

transforming the previous four equations into

c1 + k5 = 1 + k1 + k3 + k4 + k12 + k13 + k14 + k16 + k18

c2 + k6 = 1 + k4 + k9 + k10 + k11 + k15 + k17 + k16

c3 + k7 = 1 + k2 + k4 + k9 + k12 + k13 + k14 + k17 + k16

c4 + k8 = 1 + k3 + k4 + k10 + k13 + k14 + k16 + k18

This way, we get a linear system with 8 +
(

4
2

)
+
(

4
3

)
= 18 unknowns, which can be solved as

far as it has enough equations, i.e., as far as 5 plaintext-ciphertext pairs are known, leading
to 20 equations.

Practical block ciphers have obviously more than a single round. In this case, the degree
of the polynomial system is expected to grow as (degS)r when the number of rounds r
increases. Solving such a system then becomes infeasible even for a few rounds only and with
sophisticated techniques. An alternative solution consists in using some intermediate variables
in order to handle equations of a reasonable degree. For instance, let us consider the following
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two-round key-alternating cipher

m→
K0
↓
⊕→ u→ S → v →

K1
↓
⊕→ w → S → x→

K2
↓
⊕→ c .

Then, we can consider the 4 bits of the intermediate value v as four additional unknowns.
With this method, a plaintext-ciphertext pair provides 8 equations of degree 3 involving 16
unknowns (the twelve key-bits and the four bits of v). Any additional plaintext-ciphertext
pair provides four new equations, but introduces four more unknowns. Therefore, from N
plaintext-ciphertext pairs, we obtain a system with 8N equations and (12 + 4N) unknowns.

13.3.2 Enhanced algebraic attack

Courtois and Pieprzyk [CP02] have pointed out that it might be possible to lower the degree
of the polynomial system that we need to solve even if the round function has a high degree.
Indeed, the attacker may equivalently exploit any Boolean relation between the plaintext bits,
the ciphertext bits and the key-bits.

Example 13.2. If we come back to our previous toy-cipher, we can check that, even if the
inner permutation S has degree 3, there exist some Boolean relations of degree 2 only between
its inputs and outputs, for instance it can be checked that

x2x4 + x2S1(x1, . . . , x4) + x2S2(x1, . . . , x4) = 0

for all inputs. Any plaintext-ciphertext pair for our single-round toy-cipher then leads to the
following quadratic equation

(m4 + c1 + c2)k2 +m2k4 +m2k5 +m2k6 + k2k4 + k2k5 + k2k6 = m2m4 +m2c1 +m2c2 .

A total of 21 linearly independent relations of degree of 2 between the input and output bits
of S can be exhibited, implying that the derived polynomial system is easier to solve than the
original cipher equations.

An important quantity which affects the complexity of this algebraic attack is obviously
the lowest degree we can reach for a Boolean relation between the inputs and outputs of the
round permutation.

Proposition 13.2. Let S be a function from Fn2 into Fn2 . The Boolean relations of degree
at most d between the inputs and outputs of S are the elements of the kernel of the binary
matrix with

∑d
i=0

(
2n
i

)
rows and 2n columns whose rows correspond to the value vectors of the

n-variable Boolean function

xuS(x)v, u, v ∈ Fn2 such that wt(u) + wt(v) ≤ d .

Most notably, the number of linearly independent relations of degree at most d is at least

d∑
i=0

(
2n

i

)
− 2n .
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Proof. This result comes from the fact that the relations between x and S(x) correspond to
the functions ∑

u,v∈Fn2

cu,vx
u [S(x)]v

which vanish for all possible inputs x. Moreover, the degree of such a relation corresponds
to the maximal value of wt(u) + wt(v) such that cu,v = 1. Any such relation is then defined
by a linear combination of the monomials xuS(x)v which vanish at all points, i.e., an element
in the kernel of the matrix defined by the value vectors of all these monomials. The involved
matrix has 2n columns, and

∑d
i=0

(
2n
i

)
rows (corresponding to all possible pairs (u, v)). Then,

the dimension of its kernel exceeds the difference between the number of rows and the number
of columns. �

We deduce for instance that any function from F4
2 into F4

2 has at least

2∑
i=0

(
8

i

)
− 24 = 37− 16 = 21

quadratic relations between its inputs and outputs, as we observed in the toy-example.

Case of the AES. The AES Sbox can be seen as the composition of the inversion over F28

with an affine function. More precisely,

S : A ◦ ϕ−1 ◦ (ϕ(x))254 ,

where ϕ is the isomorphism from F8
2 into F28 defined by the basis {1, α, . . . , α7} and α is a

root of X8 +X4 +X3 +X + 1. By definition, the inversion Inv over F28 satisfies

x2 Inv(x) = x2x254 = x .

Since x 7→ x2 is an F2-linear mapping over F8
2, we deduce that this relation corresponds to

eight Boolean relations over F2 between the inputs and outputs of S. Actually, there exists
39 such quadratic relations for the AES Sbox. This is much higher than expected for a
randomly chosen mapping over F8

2, since Proposition 13.2 shows that there is no relation of
degree 3 for a random 8-bit Sbox.

Using these relations of degree 2, a quadratic system can be formed by introducing in-
termediate variables corresponding to the outputs of the successive rounds. However, solving
this system is infeasible due to its size: 8000 quadratic equations of 1600 variables.



94 Chapter 13. Attacks on block ciphers

13.4 Statistical attacks

While algebraic attacks exploit the existence of relations within the cipher which always hold,
statistical attacks exploit relations which hold with some probability only. More precisely,
these attacks rely on the existence of a distinguisher. A distinguisher D for a family of
functions (resp. of permutations) (Fk)k over Fn2 is an algorithm which takes as input some
pairs (xi, yi), 1 ≤ i ≤ N , and outputs 0 or 1. The aim of D is to decide whether these (xi, yi)
are input-output pairs of a randomly chosen element in family (Fk)k (D then returns 1) or of
a randomly chosen n-bit function (resp. permutation) (D returns 0) . The advantage of the
distinguisher is then defined by

Adv(D) =
∣∣∣Pr[Dπ = 1|π ∈R {Fk, k ∈ Fκ2}]− Pr[Dπ = 1|π ∈R Funcn]

∣∣∣
where Funcn is the set of n-bit functions. Instead of N plaintext-ciphertext pairs, a d-th order
distinguisher can take as inputs N d-tuples of plaintext-ciphertext [Vau99].

The existence of a distinguisher with non-negligible advantage is an unsuitable property for
a block-cipher, but it may be only a marginal threat in practice since it may not help to recover
the key. It is worth noticing that, like for stream ciphers, the existence of a distinguisher is a
real threat if the set of possible plaintexts is small (and can be exhaustively enumerated).

In the case of an iterated cipher

Ek = Fkr ◦ . . . ◦ Fk1

much more serious attacks can be derived from a distinguisher for the so-called reduced cipher,
i.e., the family G of all permutations obtained by removing the final round of the original
cipher:

Gk = Fkr−1 ◦ . . . ◦ Fk1 .

If a distinguisher D for the reduced cipher can be found, then the attacker can mount a
last-round attack, which aims at recovering the last-round key kr from the knowledge of some
plaintext-ciphertext pairsa. Indeed, the attacker can apply the distinguisher for the reduced
cipher to pairs of inputs/outputs of the function

H
k̂

= F−1

k̂
◦ Ek = F−1

k̂
◦ Fkr ◦ Fkr−1 ◦ . . . ◦ Fk1

where k̂ takes all possible values for the last-round key. The input-output pairs (x,H
k̂
(x))

are derived from plaintext/ciphertext pairs by applying to the ciphertext the inverse of the
last-round function F−1

k̂
. Clearly, if k̂ is a correct guess for the last-round key, i.e. k̂ = kr, then

H
k̂
belongs to the family of reduced-ciphers. Otherwise, if k̂ is a wrong guess, H

k̂
is assumed

to have the same behavior as a randomly chosen permutation (this assumption is known as
the wrong-key randomization hypothesis) [Har96, Kuk99]. Another implicit assumption is that
the reduced-cipher Gk has roughly the same behavior for all values of the key. This hypothesis
is known as the fixed-key equivalence hypothesis in the context of linear cryptanalysis, and the
stochastic equivalence hypothesis for differential cryptanalysis [LMM91]. It is important to

aOnce kr has been recovered, the remaining key-bits can be found either by repeating the same attack but
on the ciphers obtained by successively removing the last round, or by an exhaustive search (or even by a
combination between both methods).
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note that it is not always satisfied especially when the cipher consists of a small number of
rounds only (see e.g. [DR02, Section 8.7.2], [DR07], [DR09] and [BBL13]).

The algorithm for a last-round attack exploiting a d-th order distinguisher D is described
in Algorithm 12. This description assumes that an exhaustive search for the last-round key
is performed, which is often infeasible (and not relevant when the round-keys have the same
size as the master key like in AES-128). In most situations, it is then important that the
distinguisher does not involve all round-key bits. In this case, the distinguisher enables the
attacker to partition the set of all last-round keys into equivalence classes.

Algorithm 12 Last-round attack exploiting a distinguisher D for the reduced cipher.
Inputs. N d-tuples of plaintexts x1, . . . ,xN and the N corresponding tuples of ciphertexts
c1, . . . , cN .
Output. A set of candidates for the last-round key.
for all possible values k̂ for the last round-key kr do

counter← 0
for i from 1 to N do
yi ← (F−1

K̂
(ci,1) . . . , F−1

K̂
(ci,d)) where ci = (ci,1, . . . , ci,d)

counter← counter +D(xi,yi)
end for
if counter ≥ threshold then
return k̂

end if
end for

c c c cc

c

F F F F F−1
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Figure 13.6: Principle of last-round attacks.
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13.5 Linear cryptanalysis

13.5.1 Principle

The principle of linear cryptanalysis has been originally presented by Gilbert, Chassé and
Tardy-Corfdir [GC91, TCG91] on the block cipher FEAL, and then applied to DES by Mat-
sui [Mat94, Mat95]. It exploits, as a (first-order) distinguisher a linear Boolean relation
between the input bits, output bits and the key-bits of the reduced cipher, which is biased,
i.e., which holds with a probability different from 1/2. In other words, it uses a triple of masks
(α, β, γ) ∈ Fn2 × Fn2 × Fκ2 such that

Prx[α · x+ β ·Gk(x) + γ · k = 0] =
1

2
(1 + ε) with ε 6= 0 .

The number N of input-output pairs required for distinguishing the reduced cipher from a
random permutation with such a biased relation is at least ε−2 × ln 2. Indeed, each value
α · x + β · Gk(x) can be seen as the result of the transmission of γ · k through a binary
symmetric channel with error-probability (1 − ε)/2. The capacity of this channel can then
be approximated by ε2/ ln 2. Since the transmitted word belongs to a code of length N and
dimension 1, it can be decoded if its rate, 1/N , is smaller than the capacity, i.e. if

N ≥ ln 2

ε2
.

A linear distinguisher for the whole cipher then enables the attacker to recover one information
bit of the key, namely γ · k, from the knowledge of ln 2/ε2 plaintext-ciphertext pairs.

Example 13.3. We consider the same cipher with a 4-bit block and an 8-bit key as in
Example 13.1. Recall that its inner permutation is defined by

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S(x) f e b c 6 d 7 8 0 3 9 a 4 2 1 5
S1(x) 1 0 1 0 0 1 1 0 0 1 1 0 0 0 1 1
S2(x) 1 1 1 0 1 0 1 0 0 1 0 1 0 1 0 0
S3(x) 1 1 0 1 1 1 1 0 0 0 0 0 1 0 0 1
S4(x) 1 1 1 1 0 1 0 1 0 0 1 1 0 0 0 0

The it can be checked that the linear relation defined by the input mask α = (1, 0, 0, 1) = 0x9

and β = (0, 1, 0, 0) = 0x2 has the following value vector (with hexadecimal notation):

x1 + x4 + S2(x) = 0x7ffd .

In particular, its Hamming weight is 14 implying that this relation holds with probability
2
16 = 1

8 . From this biased relation, we can derive a distinguisher for the whole cipher described
in Example 13.1:

(α ·m)⊕ (β · c) = (α ·K0)⊕ (β ·K1) + 1

with probability 7/8. It recovers the key information-bit (k1+k4+k5+k8) by a simple majority
vote between the binary values taken by m1 +m4 + c2 + 1 for a few plaintext-ciphertext pairs.

Using the previously described framework, a last-round can be mounted also from a dis-
tinguisher on the reduced cipher. Then, the data complexity of the attack increases to

2κrε−2

where κr is the number of information bits of the key for which an exhaustive search is
performed in the last-round attack.
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13.5.2 Finding good linear approximations

Usually for finding a good linear approximation over some rounds of the cipher, we search for
good linear trails (aka linear paths) by chaining some linear approximations over the successive
rounds. We search for a linear approximation with input mask αi and output mask βi for the i-
th round, 1 ≤ i ≤ r, such that αi+1 = βi. The overall probability for the linear approximation
over r rounds can then be estimated by the following lemma, known as piling-up lemma, which
can be easily proved by induction.

Lemma 13.3 (Piling-up lemma [Mat94]). Let X1, . . .Xm be m independent random variables
which take the value 0 with probability 1

2(1 + εi) and the value 1 with probability 1
2(1 − εi).

Then

Pr[X1 + . . .+Xm = 0] =
1

2

(
1 +

m∏
i=1

εi

)
.

The independence between the successive rounds comes from the round-key insertion, but
the validity of this hypothesis can be discussed depending on the key schedule algorithm.
However, for mounting a linear attack in practice, we often start by searching for linear
approximations with masks (αi, βi) with αi+1 = βi such that the product

∏r
i=1 |εi| is maximal.

Since all rounds are usually similar, we need to estimate precisely the biases of all linear
approximations over a single round.

13.5.3 Biases of linear approximations and Walsh transform

The problem we need to solve is the following. Let F be a function from Fn2 into Fn2 (typically
F is the round-function of an iterated cipher). We want to compute the biases of all Boolean
functions of n variables

x 7→ b · F (x) + a · x

for all a and all nonzero b in Fn2 , in the sense of the following definition.

Definition 13.4. The bias (aka, correlation, or imbalance) of an n-variable Boolean function
f is

E(f) =
∑
x∈Fn2

(−1)f(x) = 2n − 2wt(f) .

In other words,

PrX [f(X) = 1] =
wt(f)

2n
=

1

2

(
1− E(f)

2n

)
.

Most notably, a Boolean function f is balanced if and only if E(f) = 0.
In the following, we denote by ϕa the linear Boolean function x 7→ a · x.
The bias of a linear function is determined as follows.

Lemma 13.5. Let a ∈ Fn2 . Then

E(ϕa) =
∑
x∈Fn2

(−1)a·x =

{
0 if a 6= 0
2n if a = 0
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Proof. Assume that a 6= 0 (the result for a = 0 is trivial). Then, the set

Ha = {x ∈ Fn2 : a · x = 0}

is a hyperplane of Fn2 , i.e., a subspace of dimension (n− 1). Then,∑
x∈Fn2

(−1)a·x = #Ha − (2n −#Ha) = 0 .

�

In linear cryptanalysis, we are interested in the biases E(f + ϕa) when a varies and when
f corresponds to all linear combinations of the coordinates of F . A useful tool for studying
all E(f + ϕa) is the Walsh transform of f .

Definition 13.6 (Walsh transform). Let f be a Boolean function of n variables. The Walsh
transform of f is the function

Fn2 → Z
a 7→ E(f + ϕa) =

∑
x∈Fn2

(−1)f(x)+a·x .

Since it corresponds to a discrete Fourier transform, The Walsh transform enjoys all math-
ematical properties of a Fourier transform. For instance, the Walsh transform is (up to a
constant factor) an involution.

Proposition 13.7. Let f be a Boolean function of n variables. For all b ∈ Fn2 , we have∑
a∈Fn2

(−1)a·bE(f + ϕa) = 2n(−1)f(b) .

Proof. ∑
a∈Fn2

(−1)a·bE(f + ϕa) =
∑
a∈Fn2

∑
x∈Fn2

(−1)a·b(−1)f(x)+a·x

=
∑
x∈Fn2

(−1)f(x)
∑
a∈Fn2

(−1)a·(x+b)

=
∑
x∈Fn2

(−1)f(x)E(ϕx+b) = 2n(−1)f(b)

where the last equality is derived from Lemma 13.5 which states that E(ϕx+b) = 0 unless
x = b. �

Computing the Walsh transform.

Another useful property of the Fourier transform is that it can be computed by a fast algorithm.
Similarly, while the naive method for computing all values of the Walsh transform of an n-
variable Boolean function has complexity 22n, the complexity of the fast algorithm described
in Algorithm 13 is proportional to n2n.
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Algorithm 13 Evaluating the Walsh transform of an n-variable Boolean function f .
Input: (f [a], 0 ≤ a < 2n)
Output: (e[a] = E(f + ϕa), 0 ≤ a < 2n)
for i from 0 to 2n − 1 do
e[i]← (−1)f [i]

end for
for k from 1 to n do
for i from 0 to 2n−k do
// Compute the image of the i-th 2k-bit block
for j from 0 to 2k−1 − 1 do
e′[2ki+ j]← e[2ki+ j] + e[2ki+ 2k−1 + j] mod 2
e′[2ki+ 2k−1 + j]← e[2ki+ j]− e[2ki+ 2k−1 + j] mod 2

end for
end for
e← e′

end for
return e

Example 13.4. Let us compute the Walsh transform of the 3-variable function

f(x1, x2, x3) = x1 + x1x2 + x2x;.

f(a) 0 1 0 0 0 1 1 1
(−1)f(a) 1 -1 1 1 1 -1 -1 -1
step 1 0 2 2 0 0 2 -2 0
step 2 2 2 -2 2 -2 2 2 2
E(f + ϕa) 0 4 0 4 4 0 -4 0

We deduce that the highest bias (in magnitude) of a linear approximation of this function is 4
and is obtained for instance for E(f + x1). This equivalently means

Pr[f(x1, x2, x3) + x2 = 0] =
1

2

(
1 +

4

23

)
=

3

4
.

Linearity and bent functions.

Since linear cryptanalysis exploits a highly biased linear approximation, a natural question for
a designer who needs to choose a good nonlinear building-block is to know the smallest possible
value we can achieve for the bias of the best linear approximation. This value is determined
by the so-called linearity of the linear combinations of the coordinates of the function, in the
sense of the following definition.

Definition 13.8 (Linearity of a Boolean function). Let f be a Boolean function of n variables.
The linearity of f is the highest magnitude of its Walsh coefficients, i.e.,

L(f) = max
a∈Fn2

|E(f + ϕa)| .

There is a general lower bound of the linearity of a Boolean function of n variables, since
the Walsh transform, as any Fourier transform, satisfies the Parseval relation.
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Proposition 13.9 (Parseval relation). Let f be a Boolean function of n variables. Then,∑
a∈Fn2

[E(f + ϕa)]
2 = 22n .

Proof.

∑
a∈Fn2

E2(f + ϕa) =
∑
a∈Fn2

∑
x∈Fn2

(−1)f(x)+a·x

∑
y∈Fn2

(−1)f(y)+a·y


=

∑
x∈Fn2

∑
y∈Fn2

(−1)f(x)+f(y)

∑
a∈Fn2

(−1)a·(x+y)


= 2n

∑
x∈Fn2

(−1)f(x)+f(x) = 22n

where the last-but-one equality is derived from Lemma 13.5. �

We directly derive the following lower bound on the linearity of a Boolean function.

Proposition 13.10. Let f be a Boolean function of n variables. Then

L(f) ≥ 2
n
2 .

The functions for which equality holds are called bent functions. They exist for even n only,
and are not balanced.

Proof. We first observe that a function f satisfying L(f) < 2
n
2 cannot exist. Otherwise, from

Parseval relation, we would have

22n =
∑
a∈Fn2

E2(f + ϕa) < 2n × 2n ,

a contradiction.
Obviously, this bound on the linearity is tight when n is even only. Let now f be a bent

function. Parseval relation implies that, for all a ∈ Fn2 ,

E2(f + ϕa) = 2n .

In other words, the Wash transform of a bent function has constant magnitude. In particular,
for a = 0, we get that E(f) = ±2

n
2 implying that f is not balanced. �

Since their output is biased, bent functions are of little use in cryptography. Most notably,
any linear combination of the coordinates of a permutation is balanced, and then satisfies
L(f) > 2

n
2 .

When n is odd, bent functions do not exist, and the lowest possible value for L(f) is
unknown for n ≥ 9. The quadratic function of (2t+ 1) variables

f(x1, . . . , x2t+1) = x1x2 + x3x4 + . . .+ x2t−1x2t + x2t+1

satisfies
L(F ) = 2

n+1
2 .

We then deduce the following proposition.
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Proposition 13.11. The lowest linearity for a Boolean function of n variables, n odd, satisfies

2
n
2 < min

f∈Booln
L(f) ≤ 2

n+1
2

where the upper bound is tight for n ≤ 7 and is not tight for n ≥ 9.

The fact that the previous upper bound is not tight for n ≥ 9 was a long-standing open
problem solved in 2006 by [KMY07]. More precisely, Table 13.1 gives the lowest possible
linearities for an n-variable Boolean function for n odd, 5 ≤ n ≤ 15. Note that, by definition,
the values of the Walsh transform, including the linearity, are always even.

n 5 7 9 11 13 15

minf∈Booln L(f) 8 16 24− 30 46− 60 92− 120 182− 216

Table 13.1: Smallest possible linearity for an n-variable Boolean function, where a− b means
that the lowest linearity can be any even integer in this range.

As previously mentioned, most cryptographic applications require the use of balanced
functions. The lowest linearity for a balanced function of n variables is also unknown for
n even. Only an upper bound on its value is derived from a recursive construction due to
Dobbertin [Dob94]. Table 13.2 gives the lowest possible linearities for an n-variable balanced
Boolean function for 4 ≤ n ≤ 10. It is worth noticing that, since the weight of a balanced
function is even, its degree is at most (n− 1). Then, all (f +ϕa) have degree at most (n− 1)
and an even degree, implying that their biases are divisible by 4.

n 4 5 6 7 8 9 10

minf∈Booln L(f) 8 8 12 16 {20, 24} {24, 28, 32} {36, 40}

Table 13.2: Smallest possible linearities for an n-variable balanced function.

13.5.4 Link with Reed-Muller codes.

The previously mentioned problems on the lowest possible linearity for a Boolean function have
been extensively investigated in coding theory since they are related to the determination of
the covering radius of the first-order Reed-Muller code. Indeed, the Walsh coefficients of a
given Boolean function are determined by the weights of the coset of R(1, n) defined by the
value vector of f , as detailed in the following proposition.

Proposition 13.12. Let f be a Boolean function of n variables. Then, the Hamming weights
of the coset f +R(1, n) defined by the value vector of f are

{2n−1 − 1

2
E(f + ϕa); 2n−1 +

1

2
E(f + ϕa), a ∈ Fn2} .
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In particular, the Hamming distance of f to R(1, n), called the nonlinearity of f , is defined by

d(f,R(1, n)) = 2n−1 − 1

2
L(f) .

Proof. By definition of R(1, n), the weights of f + R(1, n) correspond to the weights of all
words c = f + ϕa + ε, a ∈ Fn2 , ε ∈ F2. If ε = 0, we get that

wt(f + ϕa) = 2n−1 − 1

2
E(f + ϕa) .

If ε = 1, we have

wt(f + ϕa + 1) = 2n − wt(f + ϕa) = 2n−1 +
1

2
E(f + ϕa) .

The expression of d(f,R(1, n)) directly follows. �

Finding a function with minimal linearity then boils down to finding a value vector which
lies as far as possible from the code R(1, n). This corresponds to the well-known notion of
covering radius.

Definition 13.13 (Covering radius). Let C be a code of length n. The covering radius of C is
the highest Hamming distance between C and a word in Fn2 :

ρ(C) = max
c∈Fn2

d(c, C) .

Therefore, most of the previously mentioned results on the best linearity for a Boolean
functions have been first proved in terms of covering radius of the first-order Reed-Muller
codes, e.g. [Myk80, PW83, Hou93, Hou96b, Hou96a].

Linearity of Sboxes and almost bent functions.

We have studied the linearity of a Boolean function, but in order to thwart linear attacks,
we need to choose a vectorial function (aka an Sbox) such that all linear combinations of its
coordinates have a low linearity. Therefore, we define the linearity of an Sbox as follows.

Definition 13.14. Let S be function from Fn2 into Fm2 . For any b ∈ Fm2 , we denote by Sb the
Boolean functionb x 7→ b · S(x). Then, the linearity of S is the highest linearity of any of its
nonzero components, i.e.

L(S) = max
b∈(Fm2 )∗

L(Sb) = max
a,b∈(Fm2 )∗

|E(Sb + ϕa)| .

The linearity of S is now related to the weights of the following code.

Proposition 13.15 ([CCZ98]). Let S be an Sbox from Fn2 into Fn2 . Let us consider the code
ΓS having for generator matrix the following (2n+ 1)× 2n-matrix S(0) S(1) S(2) . . . S(2n − 1)

0 1 2 . . . 2n − 1
1 1 1 . . . 1


bSuch a Boolean function is usually called a component of S.
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where the integers in the first two rows of the matrix correspond to n-bit vectors, and where
each element in these two rows is an n-bit column vector. The Hamming weights of this code
are {

2n−1 − 1

2
E(Sb + ϕa); 2n−1 +

1

2
E(Sb + ϕa), a, b ∈ Fn2

}
The proof is similar to the proof of Proposition 13.12. Note that the case a and b equal

to zero should be included in order to take into account the words of R(1, n). Based on
some relationships satisfied by the weight distribution of a code with such parameters, we can
deduce a lower bound on the linearity of an Sbox.

Proposition 13.16. [CV95, CCZ98] Let S be a function from Fn2 into Fn2 . Then

L(S) ≥ 2
n+1
2 .

The Sboxes for which equality holds are called almost bent (AB) functions. They exist for n
odd only.

When n is even, almost bent functions do not exist, and the lowest possible linearity for
an n-bit Sbox is not known. But, the best known value is L(S) = 2

n
2

+1, and this value is tight
for a very few families of Sboxes, including the inversion over F2n which is used in the AES.

13.5.5 Bias of a two-round linear trail for the AES.

We now estimate the probability of a linear trail over two rounds of an SPN, like the AES.
More precisely, we consider a block cipher with block size n = tm whose nonlinear layer
consists of t copies of the same Sbox S over Fm2 . The linear layer then corresponds to the
multiplication by an n × n binary matrix M . Since it does not influence the probability of
linear approximations, the last linear layer is removed from the cipher we consider here. The
AES fits this general model. More precisely, the linear layer in the AES corresponds to the
composition of two functions, ShiftRows and MixColumns. But ShiftRows commutes with
the nonlinear layer, implying that two rounds of the AES without the last linear layer, can
be seen (up to an initial ShiftRows, as the parallel application of four independent functions
called the AES superbox (see Figure 13.7). Most properties of the AES regarding statistical
attacks only depend on the properties of this superbox.

In the following, we denote by x the input of the SPN, by y the output after the nonlinear
layer Sub, by z the output of the linear layer, and finally by u the output the second nonlinear
layer (see Figure 13.8). If we search for two-round linear trails, we need to find two linear
approximations of the nonlinear layers:

α · x+ β · Sub(x) = 0 and δ · z + γ · Sub(z) .

Moreover, we need to chain these approximations, i.e., the output mask β of the first approx-
imation must be compatible with the input mask δ of the second approximation:

β · y = δ · (My) .

This last condition can be expressed on the linear masks as follows.
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Addk00 Addk01 Addk02 Addk03

S S S S S S S S S S S S S S S S

M M M M

ShiftRows

S S S S S S S S S S S S S S S S

M M M M

S S S S S S S S S S S S S S S S

M M M M

Addk00 Addk01 Addk02 Addk03

S S S S S S S S S S S S S S S S

M M M M

ShiftRows

ShiftRows

ShiftRows

Figure 13.7: Two equivalent representations of two rounds of the AES (without the second
key addition): the usual representation on the left, and the representation with superboxes on
the right.
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Figure 13.8: Notation for all intermediate variables involved in the AES superbox.

Lemma 13.17. Two n-bit masks a and b satisfy

a · (Mx) = b · x

for all x ∈ Fn2 if and only if
b = MTa

where MT is the transpose of M .

Proof. Let Mij denote the coefficients of matrix M . Then, we have

a · (Mx) =
n∑
i=1

ai(Mx)i

=

n∑
i=1

n∑
j=1

aiMijxj

=

n∑
j=1

xj

(
n∑
i=1

aiMij

)
= (MTa) · x .

�
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Now, if the two rounds are independent, we get by the piling-up lemma that the overall
bias of the two-round linear trail is

ε = 2−nE(Subβ +ϕα)× 2−nE(Subγ +ϕδ)

= 2−n
t∏
i=1

E(Sβi + ϕαi)× 2−n
t∏
i=1

E(Sγi + ϕδi) ,

where all linear masks are decomposed into t m-bit words. Now, for any permutation S, if
only one of the masks a and b is zero, we obviously get that E(Sb + ϕa) = 0. Therefore, the
bias of the two-round linear trail is zero unless α and β have the same support, and δ and γ
have the same support. If the two masks are zero, E(Sb + ϕa) = 2m. Then, only the Sboxes
of index i with i ∈ Supp(β) (resp. in Supp(δ)) are involved in the computation of ε. These
Sboxes are called active Sboxes. Indeed, we have

ε =
∏

i∈Supp(β)

(2−mE(Sβi + ϕαi))×
∏

i∈Supp(δ)

(2−mE(Sγi + ϕδi))

≤
(
L(S)

2m

)wt(β)

×
(
L(S)

2m

)wt(δ)
≤

(
L(S)

2m

)wt(MT δ)+wt(δ)

.

It follows that this upper bound on the bias of any two-round linear trail for an SPN is
minimized if:

• the Sbox has a low linearity, i.e., L(S) is as small as possible;

• for any nonzero mask δ, wt(MT δ) + wt(δ) is as high as possible.

This second condition is captured by the notion of linear branch number of the linear layer
introduced by Daemen [Dae95].

Definition 13.18 (Linear branch number). The linear branch number with respect to Fm2 of
the linear function x 7→Mx over Fmt2 is

min
x 6=0

(wt(MTx) + wt(x)) .

Let CM denote the [2t, t]-linear code over Fm2 defined by all vectors (MTx, x). Then, the linear
branch number of M is the minimum distance of CM .

Using the coding viewpoint, we directly derive an upper bound of the linear branch number
from Singleton’s bound.

Proposition 13.19. The linear branch number of the linear function x 7→Mx over Fmt2 with
respect to Fm2 is at most (t + 1). The functions M with maximal linear branch number are
called MDS since the corresponding codes CM are MDS.

Most notably, the MixColumns transformation used in the AES is a permutation over (F8
2)4.

Its linear branch number with respect to F8
2 (the Sbox alphabet) is maximal and equal to 5.

Therefore, the building-blocks of the AES have been chosen such that the upper bound on
two-round linear trails is minimized:

ε ≤
(

25

28

)5

= 2−15 .
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13.6 Differential cryptanalysis

13.6.1 Principle

Differential cryptanalysis has been introduced by Biham and Shamir [BS91]. It exploits as a
distinguishing property the existence of a differential, i.e., of a pair of differences (a, b) in Fn2
such that

p = PrX [Ek(X + a) + Ek(X) = b]

is high. For a randomly chosen permutation, the derivative X 7→ Ek(X + a) + Ek(X) is
expected to take every possible nonzero value with uniform probability. It follows that a
differential can be used as a distinguisher if the corresponding probability p is significantly
different from 2−n. More precisely, the number of input-output pairs required for distinguish-
ing a cipher from a random permutation based on a differential with probability p is (see
e.g [BGT11])

O
(

1

p

)
.

As for linear cryptanalysis, this distinguisher may be exploited either for the whole encryption
function, or for the reduced cipher.

13.6.2 Finding good differential characteristics

A differential characteristic (aka differential path) for r rounds is a series of (r+ 1) differences
Ω = (a0, a1, . . . , ar) where ai corresponds to the difference obtained after the i-th round
when encrypting two inputs which differ from a0. The probability of the r-round differential
characteristic Ω is then defined as

p(Ω) = PrX0 [X1 +X ′1 = a1; . . . ;Xr +X ′r = ar |X0 +X ′0 = a0] ,

where Xi (resp. X ′i) denotes the image of X0 (resp. of X ′0) after the i-th round of Ek. A
cipher is said to be a Markov cipher [LMM91] when the difference between the outputs of the
i-th round depends on the difference between the outputs of the (i− 1)-th round only. In this
case, we get

p(Ω) = PrX0(X1 +X ′1 = a1; . . . ;Xr +X ′r = ar |X0 +X ′0 = a0)

=

r∏
i=1

PrXi [Fki(Xi + ai−1) + Fki(Xi) = ai] ,

where F denotes the round permutation of the cipher. The Markovian hypothesis holds for
instance when the round keys are independent and uniformly distributed. But this condition
on the round keys is usually not satisfied since the round keys are related to each other by the
key scheduling algorithm. However, the product of the expected probabilities of the successive
one-round characteristics usually provides a good estimate of the expected probability of an
r-round differential characteristic.

13.6.3 Probability of a two-round differential characteristic for the AES

We now want to upper-bound the probability of a differential characteristic for two rounds of
an SPN cipher like the AES. We use the same notation as in Section 13.5.5 (see Figure 13.8)
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and focus on the AES superbox. We denote by α and β the input and output differences of the
first nonlinear layer, and by δ and γ the input and output differences of the second nonlinear
layer. Obviously, the linear layer x 7→ Mx propagates the differences with probability one in
the sense that

PrY [M(Y + β) +MY = δ] =

{
1 if δ = Mβ
0 otherwise.

Using that the superbox is a Markov cipher (for a random round-key), the probability of the
differential trail Ω = (α,Mβ, γ) over the superbox is then defined by

p(Ω) = Pr[Sub(x+ α) + Sub(x) = β]× Pr[Sub(z +Mβ) + Sub(z) = γ]

=

(
t∏
i=1

Pr[S(xi + αi) + S(xi) = βi]

)
×

(
t∏
i=1

Pr[S(zi + (Mβ)i) + S(zi) = γi]

)
.

Obviously, since S is permutation, if only one value among the input and output differences,
a and b, is zero, we get that Pr[S(x + a) + S(x) = b] = 0, while if both values are equal to
zero, this probability is equal to one. This implies that p(Ω) = 0 unless α and β (resp. Mβ
and γ) have the same support. If this condition holds, we get

p(Ω) =

 ∏
i∈Supp(β)

Pr[S(xi + αi) + S(xi) = βi]

×
 ∏
i∈Supp(Mβ)

Pr[S(zi + (Mβ)i) + S(zi) = γi]


A relevant parameter is then the maximal probability that a given nonzero input difference
leads to a given output difference for the Sbox. This quantity is determined by the differential
uniformity of S.

Definition 13.20 (Differential uniformity [Nyb93]). Let S be a function from Fm2 into Fm2 .
For any a and b in Fm2 , we define

δ(a, b) = |{x ∈ Fm2 , S(x+ a) + S(x) = b}| .

Then
δS = max

a6=0,b
δ(a, b)

is the differential uniformity of S.

The values (δ(a, b))a,b∈Fm2 are usually represented as a two-dimensional array called the
difference table of S. It follows that, any differential characteristic Ω over the AES superbox
satisfies

p(Ω) ≤
(
δ(S)

2m

)wt(β)+wt(Mβ)

.

This upper-bound is then minimized if:

• the Sbox has a low differential uniformity, i.e., δ(S) is as small as possible;

• for any nonzero mask β, wt(β) + wt(Mβ) is as high as possible.

This second condition is captured by the notion of differential branch number of the linear
layer [Dae95].
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Definition 13.21 (Differential branch number). The differential branch number with respect
to Fm2 of the linear function x 7→Mx over Fmt2 is

min
x 6=0

(wt(x) + wt(Mx)) .

Let C⊥M denote the [2t, t]-linear code over Fm2 defined by all vectors (x,Mx). Then, the differ-
ential branch number of M is the minimum distance of C⊥M .

Proposition 13.22. The codes CM and C⊥M defining the linear and differential branch numbers
are dual to each other. In particular, the differential branch number of the linear function
x 7→Mx over Fmt2 with respect to Fm2 is maximal (and equal to (t+1)) if and only if the linear
branch number of M is maximal.

Proof. Any codeword in C⊥M is of the form (x,Mx) for some x ∈ Fmt2 while any codeword in
CM is of the form (MT y, y) for some y ∈ Fmt2 . The scalar product between two such words
always vanish. Indeed,

(x,Mx) · (MT y, y) =
t∑
i=1

xi(Mx)i +
t∑
i=1

(MT y)iyj

=
t∑
i=1

xi

 t∑
j=1

Mjiyj

+
t∑
i=1

yi

 t∑
j=1

Mijxj

 = 0 .

This implies that C⊥M is the dual of C⊥M . The result then follows from the fact that the dual
of an MDS code is MDS (see e.g. [MS77, Page 318]). �

In other words, we have proved that the linear layers which guarantee the best resistance
to linear cryptanalysis also guarantee the best resistance to differential cryptanalysis. It is
worth noticing that this correspondence only holds when the branch numbers are maximal:
for instance, a differential branch number equal to t does not imply that the linear branch
number equals t.

13.6.4 Differential uniformity of Sboxes

Proposition 13.23 ([NK93]). Let S be a function from Fn2 into Fn2 . Then, its differential
uniformity satisfies

δ(S) ≥ 2 .

The Sboxes for which equality holds are called almost perfect nonlinear (APN) functions.

Proof. The proof comes from the fact that

δ(a, b) = |{x ∈ Fm2 , S(x+ a) + S(x) = b}|

is always even since, if x is a solution of this equation, (x+ a) is a solution too. �

The APN terminology comes from the fact we call perfect nonlinear the functions from
Fn2 into Fm2 such that δ(S) = 2n−m. It can be proved that the perfect nonlinear functions
correspond to the functions with linearity L(S) = 2

n
2 , i.e., such that all their components are

bent. Such functions exist only when n ≥ 2m [Nyb91]. Therefore, when m = n, the optimal
differential uniformity is obtained for the almost perfect nonlinear functions.
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Link with Reed-Muller codes. The APN property is related to the minimum distance of
the dual of the code ΓS defined in Proposition 13.15.

Proposition 13.24 ([CCZ98]). Let S be an Sbox from Fn2 into Fn2 . Let us consider the code
ΓS having for generator matrix the following (2n+ 1)× 2n-matrix

G =

 S(0) S(1) S(2) . . . S(2n − 1)
0 1 2 . . . 2n − 1
1 1 1 . . . 1


as in Proposition 13.15. Then, the minimum distance of Γ⊥S equal to 6 if S is APN and equal
to 4 otherwise.

Proof. It can be easily checked that the minimum distance of Γ⊥S is even (since ΓS contains the
all-one codeword), and at least 4. Moreover, it cannot be greater than 6 [DZ84, BT93]. Now,
a codeword of weight 4 of Γ⊥S corresponds to four columns of the generator matrix G which
sum to zero (since the words of Γ⊥S are the column vectors c such that Gc = 0). Therefore,
Γ⊥S has minimum distance 4 if and only if there exist four distinct elements x1, x2, x3, x4 such
that

x1 + x2 + x3 + x4 = 0 and S(x1) + S(x2) + S(x3) + S(x4) = 0 .

Replacing x2 by x1 + a, we get that it is equivalent to the existence of x1, x3 and a such that

S(x1) + S(x1 + a) = S(x3) + S(x3 + a)

since x4 = x3 + (x1 + x2) = x3 + a. All four xi are distinct if and only if they correspond to
four distinct solutions of the equation

S(x+ a) + S(x) = b

with b = S(x1) + S(x1 + a). This equivalently means that S is not APN. �

The APN and AB properties then correspond to a particular value of the minimum distance
of the code Γ⊥S and ΓS . Using the relations between the weight distributions of the two codes,
it can be deduced that these two properties are related as follows.

Proposition 13.25 ([CV95, CCZ98]). Let S be an Sbox from Fn2 into Fn2 and ΓS be the
[2n, 2n+ 1]-linear code defined in Proposition 13.15. Then, if the minimum distance of ΓS is
maximal (i.e., equal to 2n−1−2

n−1
2 ), then the minimum distance of Γ⊥S is maximal (i.e., equal

to 6).

An equivalent formulation of the previous proposition is that any almost bent Sbox is also
APN. But the converse does not hold in general, except for Sboxes of degree 2 [CCZ98].

However, the previous result is relevant when n is odd only, otherwise almost bent functions
do not exist. Also, it has been conjectured for a long time that APN permutations of an
even number of variables did not exist. This has been disproved by Dillon in 2009 who has
exhibited an APN permutation of 6 variables [BDMW10]. But this is (up to composition by
affine transformations) the only known example of APN permutation of an even number of
variables. In particular, no APN permutation of eight variables is known so far. It follows
that, for a permutation depending on an even number of variables n, n ≥ 8, the best known
linearity is L(S) = 2

n
2

+1 and the best differential uniformity is δ(S) = 4. These two values
are reached by the inversion over F2n which is used in the AES. It is worth noticing that,
when n is divisible by 8, the inversion is the only known permutation of n variables (up to
composition by affine transformations) which reaches these two values.
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Link with cyclic codes. Among all Sboxes, an interesting case is the family of power
permutations (i.e., monomial functions), S(x) = xs over F2n . Then, by removing the all-one
codeword from the generator matrix of ΓS and puncturing the resulting code by removing the
first column, we get a [2n − 1, 2n]-code ΓS with generator matrix(

1 α α2 . . . α2n−2

1 αs α2s . . . α(2n−2)s

)
,

This is the parity-check matrix of a cyclic code of length (2n − 1) with defining set {1, s}.
Therefore, the search for almost bent power functions boils down to the search for cyclic codes
with two zeroes with the highest possible minimum distance and dual distance. For these
reasons, the main families of almost bent power functions have been exhibited in some work
on cyclic codes. The list of all known almost bent power permutations of n variables, n odd,
is given in Table 13.3.

exponent s

Quadratic exponents 2i + 1 with gcd(i, n) = 1, [Gol68, Nyb93]

1 ≤ i ≤ t
Kasami exponents 22i − 2i + 1 with gcd(i, n) = 1 [Kas71]

2 ≤ i ≤ t
Welch exponent 2t + 3 [Dob99b, CCD00]

Niho exponent 2t + 2
t
2 − 1 is t is even [Dob99a, HX01]

2t + 2
3t+1

2 − 1 if t is odd

Table 13.3: Known almost bent power permutations S : x 7→ xs over F2n with n = 2t+ 1
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