MPRI 2.13.2 - Error-correcting codes and applications to cryptography

Exercises on finite fields 20/09/2023

Exercise 1. Construction of \mathbf{F}_{16}

- 1. Let α be a root of $X^4 + X + 1$. Compute all successive powers of α . Is α a primitive element in \mathbf{F}_{16} ?
- 2. Compute $\alpha^7 \times \alpha^{11}$ and $\alpha^7 + \alpha^{11}$ in \mathbf{F}_{16} .
- 3. Determine all non-trivial multiplicative subgroups of \mathbf{F}_{16}^* .
- 4. Determine the order of each element in \mathbf{F}_{16} .
- 5. Compute the minimal polynomials of α , of α^5 , of α^3 and of α^7 .
- 6. Let β be a root of $X^4 + X^3 + X^2 + X + 1$. Is the set $\{1, \beta, \beta^2, \beta^3\}$ a basis of \mathbf{F}_{16} over \mathbf{F}_2 ?

Exercise 2. Power mappings over \mathbf{F}_{2^m}

- 1. Let s > 0 be an integer. When does $F_s : x \mapsto x^s$ permute the field \mathbf{F}_{2^m} ?
- 2. When F_s is a permutation, determine its inverse.
- 3. When does $F_3: x \mapsto x^3$ permute \mathbf{F}_{2^m} ?
- 4. Determine the inverse of $x \mapsto x^{2^{m-1}-1}$ on \mathbf{F}_{2^m} .

Exercise 3. Trace function

Let q be a power of a prime number, and let m > 0 be an integer. The Trace mapping from \mathbf{F}_{q^m} into \mathbf{F}_q is defined by

$$\operatorname{Tr}_{\mathbf{F}_{q^m}/\mathbf{F}_q}(x) = \sum_{i=0}^{m-1} x^{q^i}, \ x \in \mathbf{F}_{q^m} \ .$$

- 1. Prove that $\mathrm{Tr}_{\mathbf{F}_{q^m}/\mathbf{F}_q}(x^q) = \mathrm{Tr}_{\mathbf{F}_{q^m}/\mathbf{F}_q}(x)$ for all $x \in \mathbf{F}_{q^m}$.
- 2. Prove that $\operatorname{Tr}_{\mathbf{F}_{q^m}/\mathbf{F}_q}$ takes its values in \mathbf{F}_q .
- 3. Prove that $\text{Tr}_{\mathbf{F}_{q^m}/\mathbf{F}_q}$ is a linear function when \mathbf{F}_{q^m} is seen as a vector space over \mathbf{F}_q .
- 4. Compute $\operatorname{Tr}_{\mathbf{F}_{q^m}/\mathbf{F}_q}(x)$ when $x \in \mathbf{F}_q$. Deduce the value of $\operatorname{Tr}_{\mathbf{F}_{2^m}/\mathbf{F}_2}(1)$.

Exercise 4. Equations of degree 2 in \mathbf{F}_{2^m}

1. Determine the number of solutions in \mathbf{F}_{2^m} of

$$aX^2 + bX + c = 0.$$

where a, b and c are three elements in \mathbf{F}_{2^m} , $a \neq 0$.

[Hint: When $b \neq 0$, the problem boils down to solving $X^2 + X + d$.]

2. Let $\alpha \in \mathbf{F}_{2^m}$ and

$$\theta = c\alpha^2 + (c+c^2)\alpha^4 + \ldots + (c+c^2+c^4+\ldots+c^{2^{m-2}})\alpha^{2^{m-1}}.$$

Prove that, if $\operatorname{Tr}_{\mathbf{F}_{2^m}/\mathbf{F}_2}(\alpha) = 1$, then θ is a root of $X^2 + X + c$.

Deduce a simple expression of the solutions of $X^2 + X + c$ in \mathbf{F}_{2^m} , when m is odd.

Exercise 5. Polynomials with coefficients in a subfield Let K be finite field with characteristic p and P be a polynomial in K[X]. Prove that $P(X^p) = (P(X))^p$ if and only if the coefficients of P lie in \mathbf{F}_p .