Exercise 1. Construction of F_{16}

1. Let α be a root of $X^4 + X + 1$. Compute all successive powers of α. Is α a primitive element in F_{16}?
2. Compute $\alpha^7 \times \alpha^{11}$ and $\alpha^7 + \alpha^{11}$ in F_{16}.
3. Determine all non-trivial multiplicative subgroups of F_{16}^*.
4. Determine the order of each element in F_{16}.
5. Compute the minimal polynomials of α, of α^5, of α^3 and of α^7.
6. Let β be a root of $X^4 + X^3 + X^2 + X + 1$. Is the set $\{1, \beta, \beta^2, \beta^3\}$ a basis of F_{16} over F_2?

Exercise 2. Power mappings over F_{2^m}

1. Let $s > 0$ be an integer. When does $F_s : x \mapsto x^s$ permute the field F_{2^m}?
2. When F_s is a permutation, determine its inverse.
3. When does $F_3 : x \mapsto x^3$ permute F_{2^m}?
4. Determine the inverse of $x \mapsto x^{2^m-1}$ on F_{2^m}.

Exercise 3. Trace function

Let q be a power of a prime number, and let $m > 0$ be an integer. The Trace mapping from F_{q^m} into F_q is defined by

$$\text{Tr}_{F_{q^m}/F_q}(x) = \sum_{i=0}^{m-1} x^{q^i}, \ x \in F_{q^m}.$$

1. Prove that $\text{Tr}_{F_{q^m}/F_q}(x^q) = \text{Tr}_{F_{q^m}/F_q}(x)$ for all $x \in F_{q^m}$.
2. Prove that $\text{Tr}_{F_{q^m}/F_q}$ takes its values in F_q.
3. Prove that $\text{Tr}_{F_{q^m}/F_q}$ is a linear function when F_{q^m} is seen as a vector space over F_q.
4. Compute $\text{Tr}_{F_{q^m}/F_q}(x)$ when $x \in F_q$. Deduce the value of $\text{Tr}_{F_{2^m}/F_2}(1)$.

Exercise 4. Equations of degree 2 in F_{2^m}

1. Determine the number of solutions in F_{2^m} of

$$aX^2 + bX + c = 0,$$

where a, b and c are three elements in F_{2^m}, $a \neq 0$.

[Hint: When $b \neq 0$, the problem boils down to solving $X^2 + X + d$.]

2. Let $\alpha \in F_{2^m}$ and

$$\theta = c\alpha^2 + (c + c^2)\alpha^4 + \ldots + (c + c^2 + c^4 + \ldots + c^{2^{m-2}})\alpha^{2^{m-1}}.$$

Prove that, if $\text{Tr}_{F_{2^m}/F_2}(\alpha) = 1$, then θ is a root of $X^2 + X + c$.

Deduce a simple expression of the solutions of $X^2 + X + c$ in F_{2^m}, when m is odd.
Exercise 5. Polynomials with coefficients in a subfield
Let K be a finite field with characteristic p and P be a polynomial in $K[X]$. Prove that $P(X^p) = (P(X))^p$ if and only if the coefficients of P lie in F_p.