
Wave Signature Demonstration Software, v1

Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich

October 28, 2019

Preliminary comment. The software is by no mean a production software. The implementation
is meant to be a reference for the algorithms but is not protected in any way against any sort of
side-channel attack. It is not meant to be deployed, even in part, in a real life security system. Its
purpose is to demonstrate the feasibility of the Wave signature scheme primitives: key generation,
signature, verification. It may also be used to evaluate the security features of the scheme, in
particular the leakage resilience.

1 Using the Software

The software was developed in standard C for Linux with gcc (version 5.4.0). We did not try it on
other platforms.

1.1 Building

A Makefile is provide. Typing make will generate 4 executables keygen, sign, verif, and showpr.

1.2 Package Description

The package contains all source files, a Makefile, a directory ./Data/ which contain one subdirectory
for each parameter set. In this version there are 4 parameter sets. For each parameter set, pre-

identifier 128g 96g 80g 64g

block length n 8492 6368 5308 4246
error weight w 7980 5984 4988 3990
dimension of U kU 3558 2668 2224 1779
dimension of V kV 2047 1535 1280 1024
gap1 d 81 61 50 40
security (bits) λ 128 96 80 64

Table 1: Parameter Sets (version 1)

computed data is stored in the appropriate directory, e.g. ./Data/128g/wave precomp128g.dat

for the parameter identifier “128g”. All files, keys, signatures, log, . . . relevant to a particuliar
identifier are saved in this directory.

1The gap in the quantity d introduced in [1, §4,Proposition 6], its value is ≈ λ/ log2 3 for λ bits of security

1



External Files. The file keccak.c contains an implementation of SHA3 and comes from the
Keccak team website2. The files cmdline.[ch] are generated from wave.ggo with gengetopt3.

1.3 keygen

The command keygen -i 128g -k 1234 will produce a key pair corresponding to the parameters
identifier “128g” with a random generator seeded with the integer 1234. Without explicit ’-k’ the
seed is 0.

The public and secret keys are saved respectively in the files ./Data/128g/wave pk128g 1234.dat

and ./Data/128g/wave sk128g 1234.dat.

1.4 sign

The command sign -i 128g -k 1234 -m 99 -n 1000 will generate 1000 signatures of messages
seeded with all integers in [99, 1098] using the key seeded by 1234 and with the parameters corre-
sponding to the identifier “128g”. The keys must have been generated previously by keygen.

Signatures are saved in ./Data/128g/sign 128g 1234 99-1098.dat.

1.5 verif

The command verif -i 128g -k 1234 -f ./Data/128g/sign 128g 1234 99-1098.dat will ver-
ify the signature contained in the file given by ’-f’ with the key of identifier given by ’-i’. The
public key must have been generated previously by keygen.

1.6 showpr

Print all rejection sampling data (see next section).

1.7 Random Number Generation

All the ’randomness’ is generated in a deterministic way from Keccak (SHA3). This holds for keys
and messages which should thus be the same (for given seeds) regardless of the platform. This also
holds for the internal randomness of the signature primitive. This was done to allow reproducibility
of signature generation. Consequently, the software is not fully compliant with the specification.
This should not make a difference for a demo software.

2 Rejection Sampling Data

All the data used for rejection sampling is precomputed as described in the long version of the
paper [1].

2https://keccak.team/
3https://www.gnu.org/software/gengetopt

2



2.1 Internal Distributions

Internal discrete distributions appear in each of the two decoders, DV in DecodeV and DtU in
DecodeU. The latter is parameterized by t, the Hamming weight of DecodeV output.

Those distribution are very close to generalized Laplace distribution as defined in [1, §4.3]. Let
us denote D̃V and D̃tU those ditributions, and X denote a random variable following one of them.

We keep only the values ` such that the probability P(X = `) exceeds 2−λ where λ is the
target security level in bits (e.g. 128). We sort the remaining value in (almost) increasing order
`0, . . . , `N−1 and we compute the cumulated probabilities

S̃0 = P̃0, S̃i = S̃i−1 + P̃i, where P̃i = P(X = `i)

We round the cumulated probabilities S̃ ∈ {S̃0, . . . S̃N−2, S̃N−1 = 1} with (up) to 24 bits of precision

S̃ ≈ S = M 2−W , with

{
223 ≤M < 224,W = 23 + d− log2(S̃)e if S̃ ≥ 2−λ+24,
0 < M < 224,W = λ else.

The number of significant bits of S is max(24, λ− log2(2S̃)). We represent any such number with
5 unsigned bytes (ω,B0, B1, B2, B3)

S = M 2−W = 256−ω
(
B0 256−1 +B1 256−2 +B2 256−3 +B3 256−4

)
, ω = d(W + 1)/8e − 4

Finally each (cumulated) distribution is stored as an array of size N containing the (ordered) (`i, Si)
where each Si is represented by 5 bytes as described above. We define the probabilities

P0 = S0, Pi = Si − Si−1

and a new random variable Y such that P(Y = `i) = Pi. The variable Y will follow new distribu-
tions, DV or DtU , according to the one used for X, to be used in the decoders. They are very close
but not equal to the original distributions based on Laplace.

Note that having P̃i in increasing order (or close to that) was a important precaution to guaranty
that Pi is close to P̃i.

2.2 Rejection Vectors

Rejection vectors will be computed as defined in the paper [1, §4]. The distributions used to compute
the coefficients must be the distributions deriving from Pi rather than P̃i, that this the distribution
we obtained after rounding the probabilities with a finite precision (here 24 bits). Failing to do
that will introduce a small bias in the signatures and may allow a leakage attack.

Also, the rejection vector must be computed with enough precision to guaranty the absence of
bias. We computed the coefficients with λ bits of precision where λ is the target security level in
bits (e.g. 128). We used the multiprecision floating point arithmetic of GNU MP.

References

[1] Debris-Alazard, T., Sendrier, N., Tillich, J.P.: Wave: A new family of trapdoor one-way preim-
age sampleable functions based on codes. Cryptology ePrint Archive, Report 2018/996 (October
2019), https://eprint.iacr.org/2018/996

3


